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CHAPTER 1 

INTRODUCTION 

1.1. DESIGN AND ANALYSIS OF A COMPONENT 

Mechanical design is the design of a component for optimum size, shape, etc., 
againstfailure under the application of operational loads. A good design should 
also minimise the cost of material and cost of production. Failures that are 
commonly associated with mechanical components are broadly classified as: 

(a) Failure by breaking of brittle materials and fatigue failure (when 
subjected to repetitive loads) of ductile materials. 

(b) Failure by yielding of ductile materials, subjected to non-repetitive 
loads. 

(c) Failure by elastic deformation. 

The last two modes cause change of shape or size of the component 
rendering it useless and, therefore, refer to functional or operational failure. 
Most of the design problems refer to one of these two types of failures. 
Designing, thus, involves estimation of stresses and deformations of the 
components at different critical points of a component for the specified loads 
and boundary conditions, so as to satisfY operational constraints .. 

Design is associated with the calculation of dimensions of a component to 
withstand the applied loads and perform the desired function. Analysis is 
associated with the estimation of displacements or stresses in a component of 
assumed dimensions so that adequacy of assumed dimensions is validated. 
Optimum design is obtained by many iterations of modifYing dimensions of the 
component based on the calculated values of displacements and/or stresses 
vis-a-vis permitted values and re-analysis. 

An analytic method is applied to a model problem rather than to an actual 
physical problem. Even many laboratory experiments use models. A geometric 
model for analysis can be devised after the physical nature of the problem bas 
been understood. A model excludes superfluous details such as bolts, nuts, 
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rivets, but includes all essential features, so that analysis of the model is no~ 
unnecessarily complicated and yet provides results that describe the actual 
problem with sufficient an:uracy. A geometric model becomes a mathematical 
",tHlel when its behaviour is described or approximated by incorporating 
restrictions such as homogeneity, isotropy, constancy of material properties and 
mathematical simplifications applicable for small magnitudes of strains and 
rotations. 

Several methods, such as method of joints for trusses, simple theory of 
bending, simple theory of torsion, analyses of cylinders and spheres for axi
symmetric pressure load etc., are available for designing/analysing simple\ 
components of a structure. These methods try to o~tain exact solutions of:: 
second order partial differential equations and are based on several assumptions. 
on sizes of the components, loads, end conditions, material properties, likely !:~ 
deformation pattern etc. Also, these methods are not amenable for .,' 
generalisation and effective utilisation of the computer for repetitive jobs. 

Strength of materials approach deals with a single beam member for • 
different loads and end conditions (free, simply supported and fixed). In a space -,. 
frame involving many such beam members, each member is analysed \f 
independently by an assumed distribution of loads and end conditions. ' 

For example, in a 3-member structure (portal frame) shown in Fig. 1.1, the 
(horizontal) beam is analysed for deflection and bending stress by strength of 
materials appnl1ch considering its both ends simply supported. The load and 
moment reactions obtained at the ends are then used to calculate the deflections 
and "tresses in the two columns separately. 

p P R, R2 r-: t '+ .. .~ 
2 I M, t 2 t M2 M, M2 

R, R2 
3 + 3 

/17' 

FIGURE 1.1 Analysis of a simple frame by strength of materials approach 

Simple supports for the beam imply that the columns do not influence slope 
of the beam at its free ends (valid when bending stiffness of columns = 0 or the 
column is highly flexible). Fixed supports for the beam imply that the slope of 
the beam at its ends is zero (valid when bending stiffness of columns = 00 or the 
column is extremely rigid). But, the ends of the horizontal beam are neither 
simply sup .. ,}lied nor fixed. The degree of fixity or influence of columns on the 
slope of the lJeam at its free ends is based on a finite, non-zero stiffness value. 
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Thus, the maximum deflection of the beam depends upon the relative stiffness 
of the beam and the columns at the two ends ofthe beam. 

For example, in a beam of length 'L', modulus of elasticity 'E', moment of 
inertia 'I' subjected to a uniformly distributed load of'p' (Refer Fig. 1.2). 

Deflection, 8 = 5 pL4 with simple supports at its two ends (case (a» 
384EI 

i 

= ~ with fixed supports at its two ends (case (b» 
384 EI 

Case (a) : Simple supports Case (b) : Fixed supports 

FIGURE 1.2 Deflection of a beam with different end conditions 

If, in a particular case, 
L= 6 m, E= 2 x 1011 N/m2, Moment of inertia for beam IB =·0.4!t x W-4 m4 

Moment of inertia for columns Ie = 0.48 x 10-4 m4 and distributed load 
p=2 kN/m, 

Dmax = 3.515 mm with simple supports at its two ends 
and Dmax = 0.703 mm with fixed supports at its two ends 
whereas, deflection of the same beam, when analysed along with columns by 

FEM, 
Dmax = 1.8520 mm, when IB = Ie (Moments of inertia for beam & columns) 

= 1.0584 mm, when 5 IB = Ie 
and = 2.8906 mm, when IB = 5 Ie 

All the three deflection values clearly indicate presence of columns with 
finite and non-zero stiffness and, hence, the deflection values are in between 
those of beam with fr~e ends and beam with fixed ends. 

Thus, designing a single beam member of a frame leads to under-designing 
if fixed end conditions are assumed while it leads to over-designing if simple 
supports are assumed at its ends. Simply supported end conditions are, 
therefore, normally used for a conservative design in the conventional approach. 
Use of strength of materials approach for designing a component is, therefore, 
associated with higher factor of safety. The individual member method was 
acceptable for civil structures, where weight of the designed component is not a 
serious constraint. A more accurate analysis of discrete structures with few 
members is carried out by the potential energy approach. Optimum beam design 
is achieved by analysing the entire structure which naturally considers finite 

3 
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stiffness of the columns, based on their dimensions and material, at it.~ ends. 
This approach is followed in the Finite Element Method (FEM). 

:1..2 ApPROXIMATE METHOD VS. EXACT METHOD 

An analytical solution is a mathematical expression that gives the values of the 
desired unknown quantity at any location of a body and hence is valid for an 
infinite number of points in the component. However, it is not possible to obtain 
analytical mathematical solutions for many engineering problems. 

For problems involving complex material properties and boundary 
conditions, numerical methods provide approximate but acceptable solutions 
(with reasonable accuracy) for the unknown quantities - only at discrete or 
finite number of points in the component.-Approximation is carried out in two 
stages: 

(a) In the formulation of the mathematical model, w.r.t. the physical 
behaviour of the component. Example : Approximation of joint with 
multiple rivets at the junction of any two members of a truss as a pin 
joint, assumption that the joint between a column and a beam behaves 
like a simple support for the beam,.... The results are reasonably 
accurate far away from the joint. 

(b) In obtaining numerical solution to the simplified mathematical model. 
The methods usually involve approximation of a functional (such as 
Potential energy) in terms of unknown functions (such as 
displacements) at finite number of points. There are two broad 
categories: 

(i) Weighted residual methods such as Galerkin method, 
Collocation method, Least squares method, etc. 

(ii) Variational method (Rayleigh-Ritz method, FEM). FEM is an 
improvement of Rayleigh-Ritz method by choosing a 
variational runction valid over a small element and not on the 
entire component, which will be discussed in detail later. These 
methods also use the principle of minimum potential energy. 

(iii) Principle of minimum potential energy: Among all possible 
kinematically admissible displacement fields (satistying 
compatibility and boundary conditions) of a conservative system, 
the one corresponding to stable equilibrium state has minimum 
potential energy. For a component in static equilibrium, this 
principle helps in the evaluation of unknown displacements of 
deformable solids (continuum structures). 

Some of these methods are explained here briefly to understand the historical 
growth of analysis techniques. 
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1.3 WEIGHTED RESIDUAL METHODS 

Most structural problems end up with differential equations. Closed form 
solutions are not feasible in many of these problems. Different approaches are 
suggested to obtain approximate solutions. One such category is the weighted 
residual technique. Here, an approximate solution, in the form y = l:Nj.Cj for 

i = 1 to n where Cj are the unknown coefficients or weights (constants) and Nj 
are functions of the independent variable satisfying the given kinematic 
boundary conditions, is used in the differential equation. Difference between the 
two sides of the equation with known terms, on one side (usually functions of 
the applied loads), and unknown terms, on the other side (functions of constants 
Cj), is called the residual, R. This residual value may vary from point to point in 
the component, depending on the particular approximate solution. Different 
methods are proposed based on how the residual is used in obtaining the best 
(approximate) solution. Three such popular methods are presented here. 

(a) Galerkin Method 
It is one of the weighted residual techniques. In this method, solution is 
obtained by equating the integral of the product of function Nj and 
residual R over the entire component to zero, for each Nj. Thus, the on' 
constants in the approximate solution are evaluated from the on' 

conditions jNj.R.dx=O for i = I to n. The resulting solution may 

match with the exact solution at some points of the component and may 
differ at other points. The number of terms Nj used for approximating 
the solution is arbitrary and depends on the accuracy desired. This 
method is illustrated through the following examples of beams in 
bending. 

Example 1.1 

Calculate the maximum deflection in a simply supported beam, subjected to 
concentrated load 'P' at the center of the beam. (Refer Fig. 1.3) 

RJ =P/2 

t:=L/2~ ~I 

FIGURE 1.3 

5 
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Solution 

y = 0 at x ::::; 0 and x = L are the kinematic boundary conditions of the beam. So, 
the functions Ni are chosen from (x - at.(x - b)q, with different positive integer 
values for p and q; and a ::::; 0 and b = L. 

(i) Model-I (I-term approximation): The deflection is assumed as 

y(x) =N.c 

with the function, N = x(x - L), 

which satisfies the end conditions y = 0 at x = 0 and y = 0 at x = L. 
The load-deflection relation for the beam is given by 

EI(d2Y ]=M 
dx2 

where M = (P/2).x for O:S x :s Ll2 
and M = (P/2).x - P.[x - (Ll2)] = (P/2).(L - x) for Ll2:S x:S L 
Thus, taking y = x.(x - L).c, 

d2y 
-=2c 
dx 2 

and tbe residual oftbe equation, R = EI (~; ) - M = EI . 2c - M 

Then, the unknown constant 'c' in the function 'N' is obtained from 
L 
"2 L 

IN.R.dx+ IN.R.dx=O 
o L 

2 

(two integrals needed, since expression for M changes at x = L ) 
2 

!x.(x-Lll.[ EI.2C-(~).X}x + px.(x-L)l.[ EI.2C-m(L-X)fx =0 

Therefore, 

At 

5PL 
=>c=--

64 EI 

5PL 
y=x(x-L). --

64E1 

L 
x= 2' y=Ymax= 

2 

5 pI} - PL3 

---or 
256 EI 51.2 EI 
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_PL3 

This approximate solution is close to the exact solution of --
48EI 

obtained by double integration of EI (~;) = M = (~ l.x, with 

appropriate end conditions. 

(ii) Model-2 (2-term approximation): The deflection is assumed as 

y(x) = NI.cl + N2.C2 

with the functions NI = x(x - L) and N2 = x.(x - L)2 

which satisfy the given end conditions. 
Thus, taking y = x.(x - L).cl + x.(x - Lfc2, 

(
d

2y
) dx 2 = 2cI + 2.(3x - 2L).C2 

and the residual of the equation, 

(
d

2y
) R = EI. dx 2 - M = EI.[2cl + 2.(3x - 2L).c21 - M 

where M = (P/2).x for 0::; x ::; Ll2 
and M = (PI2).x - P.[x - (Ll2)] = (P/2).(L - x) for Ll2::; x::; L 

Then, the unknown constants 'CI' and 'C2' in the functions 'N1' are 
obtained from 

L 

f N ,.R.dx = }[x.(x - L 1I{ EI [2e, + 2.(3x - 2L )e,l- ( ~ }+. 
+ px.(x - L)J{ EI.[2e, + 2.(3x - 21)e,l-(~ }(L - xl}dX = 0 

2 

and f N, .R.dx = }Ix.(x - L)' l.{ EI!2e, + 2~3 x - 2L }.c,I-( ~ }. }dX 

+ flx,(x - L)' l{ EI!2e, + 2.(3x - 2L)e,I-( ~}<L - Xl}dx = 0 

2 

Simplifying these equations, we get 
5PL 

2cI - C2.L = -- and 
16EI 

75PL 
5cI - 4~.L = --

192EI 
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Solving these two simultaneous equations, we get 

55PL 25P 
c( = 192E1 and C2 = 96E1 

Thus, we get 

55PL 2 25P 
y=x(x-L). -- +x(x-L).--

192EI 96EI 

and at x=L/2 y=y = PL\-55+25) or 
, max 4x192EI 

PL3 

25.6EI 
Note: The bending moment M is a function of x. The exact solution of y 

should be a minimum of 3rd order ft. :+ion so that d
2

; = M is a function 
dx EI 

ofx. 

(b) Collocation Method 
In this method, also called as the point collocation method, the residual is 
equated to zero at 'n' select points of the component other than those at 
which the displacement value is specified, where 'n' is the number of 
unknown coefficients in the assumed displacement field, i.e., R( {c} ,Xi) = 0 
for i = 1, .. n. It is also possible to apply collocation method on some select 
surfaces or volumes. In that case, the method is called sub ·domain 
collocation method. 

i.e., 

or 

JR({c},x).dSj = 0 

JR({c},x). dVk = 0 

for j = 1, .. m 

for k = 1, .. m 

These methods also result in 'n' algebraic simultaneous equation in 'n' 
unknown coefficients, which can be easily evaluated. 

The simpler of the two for manual calculation, point collocation method, 
is explained better through the following example. 

Example 1.2 

Calculate the maximum deflection in a simply supported beam, subjected to 
concentrated load 'P' at the center of the beam. (Refer Fig. 1.4) 

RI =P/2 

~U24 ~I 
FIGURE 1.4 
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Solution 

Y = 0 at x = 0 and x = L are the kinematic boundary conditions of the beam. So, 
the functions Ni are chosen from (x - a)p.(x - b )q, with different positive integer 
values for p and q; and a = 0 and b = L. 

(i) Model-l (I-term approximation): The deflection is assumed as 
y(x) = N.c 

with the function N = x(x - L), 

which satisfies the end conditions y = 0 at x = 0 and y = 0 at x = L 

The load-deflection relation for the beam is given by 

EI (d
2y

] = M 
dx 2 

where M = (P/2).x for 0 ::; x ::; Ll2 

and M = (P/2).x - P.[x - (Ll2)] = (P/2).(L - x) for Ll2::; x::; L 

. d2y 
Thus, takmg y = x.(x - L).c, -2 = 2c 

dx 

and the residual of the equation, R ~ EI ( ::; ]- M ~ EI ( ::; ]-( ~ }x 

Then, the unknown constant 'c' in the function 'N' is obtained by 
choosing the value of residual at some point, say x = Ll2, as zero. 

i.e., R(C'X)=EI.2C-(~JX=O at x= ~ ~ c= :~ 
PL 

Therefore, y = x(x - L).-
8EI 

L PL3 

At x='2' Y=Ymax =- 32EI 

(ii) Model-2 (2-term approximation) : The deflection is assumed as 

y(x) = N).c) + N2.C2 

with the functions N) = x(x - L) and N2 = x. (x - Li, 

which satisfy the given end conditions. 

Thus, taking Y = x. (x - L ).c) + x. (x - Li.C2, 

d2y 
-2 = 2c) + 2.(3x - 2L }c2 
dx 

9 
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and the residual ofthe equation, 

R = EI.(~)- M =: EI.[2cI +;.(3x-- 2L).C2J - M 
dx-

\\ here M = (P/2).x for 0 ~ x ~ Ll2 

and M = (P/2).x - P.Lx - (Ll2)] = (P/2).(L - x) for Ll2 ~ x ~ L 

Then, the unknown constants 'c\' and 'C2' in the functions 'N,' are 
ohtained from 

R( {c} ,x) = EI.[2c\ + 2.(3x - 2L ).c21 - (P/2).x = 0 at x = Ll4 

and R( {c} ,x) = EI.[2c\ + 2.(3x - 2L).C2] - (P/2).(L - x)} = 0 at x = 3L14 

or 
PL 

4cI -5L.c2 =-
4EI 

PL 
and 4cI + L.c2 =-

4EI 

PL 
~ c l = -- and C2 = 0 

16EI 

PlY L 
~ Ymax =- 64EI at x =2" 

Choosing some other collocation points, say x = L and x = 2L , 
3 3 

PL PL 
CI -L.c2 =-- and c\ +0=--

12EI 12EI 

PL 
=> c\ = -- and C2 = 0 

12EI 

L -PlY 
At x = 2"' Y max = 48E1 ' which matches exactly with closed fonn 

solution 

(e) Least Squares Method 

In this method, integral of the residual over the entire component is 

. . . d' aI 0 fi . I mInImIZe . I.e., - = or I = , .. n, 
ac, 

where 1= fiR({a},x)]2.dx 

This method also results in 'n' algebraic simultaneous equation in 'n' 
unknown coefficients, which can be easily evaluated. 
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Example 1.3 

Calculate the maximum deflection in a simply supported beam, subjected to 
concentrated load 'P' at the center of the beam. (R~fer Fig. 1.5) 

Solution 
, 

Again, y = 0 at x = 0 and y = 0 at x = L are the kinematic boundary conditions 
of the beam. So, the functions Ni are chosen from (x - a)p.(x - b)q, with different 
positive integer values for p and q. 

RJ = P/2 

l:=L/2~ ~I 
FIGURE 1.5 

l-term approximation: The deflection is again assumed as y(x) = N.C, 

with the function N = x(x - L), 

which satisfies the end conditions y = 0 at x = 0 and y = 0 at x = L 

The load-deflection relation for the beam is given by 

EI (d2y
) = M 

dx 2 

where M = (P/2).x for 0 ~ x ~ Ll2 

and M = (P/2).x - P.[x - (Ll2)] = (P/2).(L - x) for Ll2 ~ x ~ L 

Thus, taking y = x.(x - L).c, d
2
; = 2c 

dx 

and the residual of the equation, R ~ EI (::;- ) ~ M ~ Ef . 2c ~ M 

Then, 1= fiR({c},X)]2 .dx and the constant 'c' in the function y(x) is obtained from 

L 

~=~ J[[R({c},x)f -(P).X]dX+~ Y[R({C},X)]2 -(P).(L-X)]dX 
8al &1 0 2 &1 lL 2 

2 

PL 
~ c=-

8EI 

-prJ L 
and Ymax = 32EI at x ="2 
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1.4 VARIATIONAL METHOD OR RAYLEIGH - RITZ METHOD 

This method involves choosing a displacement field over the entire component, 
usually in the form of a polynomial function, and evaluating unknown 
coefficients of the polynomial for minimum potential energy. It gives an 
approximate solution. Practical application of this method is explained here 
through three different examples, involving 

(a) uniform bar with concentrated load, 

(b) bar of varying cross section·with concentrated load, and 

(c) uniform bar with distributed load (self-weight). 

Example :1..4 

Calculate the displacement at node 2 of a fixed beam shown In Fig. 1.6, 
SUbjected to an axial load 'P' at node 2. 

I: J .1 2 ~ P 

U2 "14 Ll2 

~x.u 

FIGURE 1.6 

Solution 

Method - :I. 
The total potential energy for the linear elastic one-dimensional rod with built
in ends, when body forces are neglected, is 

1 (d)2 1t="2 JEA d: dX-PUJ 

Let us assume u = a1 + a2x + a3x2 as the polynomial function for the 
displacement field. 

Kinematically admissible displacement field must satisfy the natural 
boundary conditions 

u = 0 at x = 0 which implies a1 = 0 

and u = 0 at x = L which implies a2 = - a3 L 

At X= ~ , u1 =a2(~)+a3(~J =-a3 ~ 
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Therefore, 

1 L (dU)2 
1t=- fEA - dx-Pu J 

20 dx 

=- fEA{a 2 + 2a3xYdx- P -a3 -
1 L ( L2) 
20 4 

1 L L2 
=-EAa~ f{2x-LYdx+Pa3 -

20 4 

2 U L2 
=EAa3 -+Pa3 -

6 4 
an: 

For stable equilibrium, - = 0 gives aa3 

Displacement at node 2, 

-3P 
a =--

3 4EAL 

INTRODUCTION 

It differs from the exact solution by a factor of ~ . Exact solution is obtained 
4 

when a piece-wise polynomial interpolation is used in the assumption of 
displacement field, u. 

Stress in the bar, 0' = E( :~ ) = E{a2 + a3x) = E{x - L)a3 

= -3PE{x-L) 3P{L-x) 

4EAL 4AL 

= + ( ~ ) (:) at x = 0 and - ( ~ ) (:) and x = L 

or ± (%)(2:) 
Due to the assumption of a quadratic displacement field over the system, 

stress is found to vary along the length of the bar. However, stress is expected 
to be constant (tensile from J to 2 and compressive from 2 to 3). Hence, the 
solution is not exact. 
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Method - 2 

In order to compare the accuracy of the solution obtained by Rayleigh-Ritz 

method, the beam is analysed considering it to be a system of two springs in 

series as shown in Fig. 1.7 and using the stiffness of the axially loaded bar in 

the potential energy function. 

FIGURE 1. 7 

The stiffness of each spring is obtained from 

K =!= {a.A} 2AE 

u [E{~)] L 

For equilibrium of this I-DOF system, 

arc 
-=2K.u2 - P=O 
8u 2 

P PL 
or u -----

2 - 2K - 4AE 

Stress in the beam is given by, 

The displacement at 2 by Rayleigh-Ritz method differs from the exact 

solution by a factor of i, while the maximum stress in the beam differs by a 
4 

factor of i. The stresses obtained by this approximate method are thus on the 
2 
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conservative side. Exact solution is obtained when a piece-wise polynomial 

interpolation is used in the assumption of displacement field, u. The results are 

plotted in Fig. 1.8. 

Method - 3 

Rayleigh-Ritz 

/' 
/ 

\--,,-,," 
" 

Displacement variation 

Rayleigh-Ritz 

... / Exact solution 
......... 

... ... ...... 
+ve ...... ...... ...... 

... ... ...... ...... ...... ...... 
Stress variation 

FIGURE 1.8 

-ve 

... ... ...... ...... 

If the assumed displacement field is confined to a single element or segment of 
the component, it is possible to choose a more accurate and convenient 
polynomial. This is done in finite element method (FEM). Since total potential 
energy of each element is positive, minimum potential energy theory for the 
entire component implies minimum potential energy for each element. Stiffness 
matrix for each element is obtained by using this principle and these matrices 
for all the elements are assembled together and solved for the unknown 
displacements after applying boundary conditions. A more detailed presentation 
of FEM is provided in chapter 4. 

Applying this procedure in the present example, let the displacement field in 
each element of the 2-element component be represented by u = ao + a).x. With 
this assumed displacement field, stiffness matrix of each axial loaded element of 
length (L/2) is obtained as 

[K]=( 2~E)[ ~ 1 ~ 1] and {P} = [K] {u} 

15 
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The assembled stiffness matrix for the component with two elements is then 
obtained by placing the coefficients of the stiffness matrix in the appropriate 
locations as 

[
1 -1 0 J{U

I
} {PI} e~E) -I 1:1 -I u, ~ P, 

o 1 1 u3 P3 

Applying boundary conditions UI = 0 and U3 = 0, we get 

(
2AE)2U 2 =P2 =P ~ u2= PL 

L 4AE 

The potential energy approach and Rayleigh-Ritz method are now of only 
academic interest. FEM is a better generalisation of these methods and extends 
beyond discrete structures. 

Examples of Rayleiglt-Ritz metltod, witlt variable stress in tlte members 

These examples are referred again in higher order I-D truss elements, since they 
involve stress or strain varying along the length of the bar. 

Example :1..5 

Calculate displacement at node 2 of a tapered bar, shown in Fig 1.9, with area of 
cross-section Al at node 1 and A2 at node 2 SUbjected to an axial tensile 
load 'P'. 

---'p 

L ---+I 
--+x.u 

FIGURE 1.9 

Solution 

Different approximations are made for the displacement field and comparison 
made, in order to understand the significance of the most reasonable 
assumption. 

(a) Since the bar is identified by 2 points, let us choose a first order 
polynomial (with 2 unknown coefficients) to represent the displacement 
field. Variation of A along the length of the bar adds additional 
computation. Let A(x) = A) + (A2 - A).xlL 
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Let u = al + a2.x At x = 0, u = al = 0 

Then, 
du 

. -=a and u) = a).L , dx 2 --

Therefore, 

I L ~d)2 1t=- JEA(X ~ dx-Pu 2 
20 dx 

= ! JE[AI +(A2 -AJ.~]a~ dx - P.a2·L 
20 L 

=~E[ AIL+(A2 -AJ ~Ja~ -P.a2·L 

=~E[(AI +A2} ~Ja~ -P.a2·L 

For stable equilibrium, On = E[(AI + A2)' LJa2 - P.L = 0 
8a 2 2 

from which a, can be evalualed as, a, = [ (p )] 
E AI +A2 

2 

Then, 
P.L 

u, =a,.L = [E.(A'2+ A2)] 

and ", =cr, = {:~)= E a, = [(A, ; A,l] 
For the specific data of AI = 40 mm2

, A2 = 20 mm2 and L = 200 mm, we 
obtain, 

6.667 P 
u2 = and 0'1 = 0'2 = 0.0333 P 

E 
(b) Choosing displacement field by a first order polynomial gave constant 

strain (first derivative) and hence constant stress. Since a tapered bar is 
expected to have a variable stress, it is implied that the displacement field 
should ,be expressed by a minimum of 2nd order polynomial. Therefore, 
the solution is repeated with 

At x = 0, u = al = 0 

17 
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2 du 2 
Then, u=a2.x+a3'x; -=a2 +2a3.x and u2=a2.L+a).L 

dx 

1 L (d )2 Therefore, 1[=- JEA(X). ~ dx-Pu2 
20 dx 

= ~ JE[ AI +(A2 -AI)' ~Ja2 +2a3x)2dx-P(a2.L+a3.L2) 
o ,-

For stable equilibrium, an = 0 
aa2 

6P 
~ 3 a2 (3AI - A2) + 2a3 L (SAl - 2A2) = E 
an 3P 

and -=0 ~ a2(SAI-2A2)+a3L(7AI-3A2)=-
aa3 E 

For the specific data of AI = 40 mm2, A2 = 20 mm2 and L = 200 mm, we 
obtain, 

= 0.0339 P 

and 0'2 = E(a2 + 2a3L) = 0.03518 P 

(c) This problem can also be solved by assuming a 2nd order displacement 
function, satisi)ring a linearly varying stress along the length but with 2 
unknown coefficients as 

u = al + a2.x2 At x = 0, u = al = 0 
2 du 2 

U = a2.x ; - =2a2.x and U2 = a2.L 
dx 

Then, 
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expression for a2 as 

PL a - -;=-----~ 
2 - [E (AI; 3A2 ) ] 

For the same set of data for A" A2 and L, we get 

2 6P 
u2 =a2·L =-

E 

0"1 =E.E1=E.(dU) 
dx x;o 

= E.(2a2xt;o =0 

0"2 = E.(2a2x)X;L = 2Ea 2L = 0.06 P 

Sr. No. 
Displacement Displacement, Stress at 1, 

polynomial U2 0"1 

1 u = al + a2'x 6.667 PIE 0.0333 P 

2 u = al + a2.x + a].x2 6.652 PIE 0.0339 P 

3 u = al + a2.x2 6.0 PIE 0.0 

4 OJ = PIA, (Exact solution) 0.025 P 

INTRODUCTION 

Stress at 2, 

0"2 

0.0333 P 

0.03518 P 

0.06 P 

0.05 P 

These three assumed displacement fields gave different approximate 
solutions. These are plotted graphically here, for a better understanding of the 
differences. Exact solution depends on how closely the assumed displacement 
field matches with the actual displacement field. 

End I Stress End 2 

The most appropriate displacement field should necessarily include 
constant term, linear term and then other higher order terms. 

19 
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Example .1.6 

Calculate the displacement at node 2 of a vertical bar, shown in Fig. 1.10, due to 
its self-weight. Let the weight be w N/m of length. 

Solution 

Since the load is distributed, varying linearly from zero at the free end to 
maximum at the fixed end, it implies that the stress also varies linearly from the 
free end to fixed end. As shown in the last example, therefore, a quadratic 
displacement is the most appropriate. However, work potential needs to be 
calculated through integration of product of varying load and corresponding 
displacement, along the length. 

2 

x 

\ 
\ Self-weight 
\ Distribution 

V 
\ 
\ 
\ 
\ 
\ 

FIGURE 1.10 

(a) Let u = a\ + a2.x + a3.x2. At x = 0, u\ = a\ = 0 

du 
-=a2 +2a3·x 
dx 

Since applied load is zero at the free end, 

Strain at x = L, (dU) = a2 + 2a3.L = 0 => a 2 = - 2a3L 
dx 2 

Then, u= a3.(x2-2Lx); and du =2a3.(x-L) 
dx 

Let P = - w(L - x) acting along -ve x-direction 
Therefore, 

1 L (d)2 L 
1t=- fEA ~ dx- fPdl 

20 dx 0 

1 L L 

=- f EA.[2a3.(x-L)f dx - fi- w(L-x)l2aAx-L)dx 
20 0 

= 2EA.ai·e 
3 

2w.a3·e 

3 
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For stable equilibrium, an = 0 => a = ~ 
aa3 3 2EA 

2 -w.L2 
Atx=L, u2 =-a3.L =---

2EA 

Stress, 0" = E. du = E.[2a3.(x - L)]= (w ).(x - L) 
dx A 

At x = 0, 0"( = -( W~L ) compressive 

And at x = L, 0"2 = 0 

Example 1.7 

Calculate the displacement at node 2 of a vertical bar supported at both ends, 
shown in Fig. 1.11, du~ to its self-weight. Let the weight be w N/m of length. 

Solution 

As explained in the last example, a quadratic displacement is the most 
appropriate to represent linearly varying stress along the bar. 

(a) Let u = a( + a2.x + a3.x2 At x = 0, u( "= al = 0 

At x = L, U2 = a2.L + a3.L 2 = 0 => a2 = -a3L 

Then, u = a3.(x2 - Lx) 

and du = a3.(2x - L) 
dx 

Let P = - w(L - x) acting along -ve x-direction 

x 

\ 
\ 

\ Self-weight 
\~DiStribution 

\ 
\ 

FIGURE 1.11 

21. 
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Therefore, 

1 L (d)2 L 
1[=- JEA ~ dx- JPdu 

20 dx 0 

1 L L 

=- JEA.[a3.(2x - L)]2dx + JW(L- x).a3·(2x - L}dx 
20 0 

1 2e e 
=-EA.a3·--2w.a3·-
233 

For stable equilibrium, 

At 

Stress, 

On =0 ~ a
3 

= 2w 
8a3 EA 

L 
X=-

2 ' 

L2 L2 
u= -a3.-=-w.--

4 2EA 

(J = E. du = E.[aA2x - L)]=(2W·).(2X - L) 
dx A 

At x = 0, (J\ = -(2w.L/A) compressive 

tensile and at x = L, 0"2 = (2w.LlA) 

1.5 PRINCIPLE OF MINIMUM POTENTIAL ENERGY 

The total potential energy of an elastic body (1[) is defined as the sum of total 
strain energy (U) and work potential (W). 

i.e., 1[=U+ W, 

where U =(~)J(JEdV 
and W=- JuTFdV- fuTTdS- ~>I PI 

v s 

Here, 'F' is the distributed body force, 'T' is the distributed surface force 
and 'P.' are the concentrated loads applied at points i = I, .. n. One or more of 
them may be acting on the component at any instant. 

For a bar with axial load, if stress 0" and strain E are assumed uniform 
throughout the bar, 

U =(~)(JE v =(~)(JE A L =(~)((J A)(E L)=(~) F8 =(~)k 82 
..... (~1) 
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The work potential, W = - fq T f dV - fq T T ds - L u/ Pi ..... (1.2) 

for the body force, surface traction and point loads, respectively. 

Application of this method is demonstrated through the following simple 
examples. Since FEM is an extension of this method, more examples are 
included in this category. 

Example 1.8 

Calculate the nodal displacements m a system of four springs 
Fig. 1.12 

k, 

F"q, 

2 
k) k4 

FIGURE 1.12 Example of a 5-noded spring system 

Solution 

The total potential energy is given by 

(
1 2 1 2 1 2 1 2) ( ) 1t = - klol + - k 202 + - k303 + - k 404 + - Flql - F3q3 
2 2 2 2 

where, qh q2, q3 are the three unknown nodal displacements. 
At the fixed points 

q4 = q5 = 0 
Extensions of the four springs are given by 

01=ql-q2; 02=q2 
03 = q3 - q2; 04 = -q3 

For equilibrium of this 3-DOF system, 

an = 0 for i = 1 2 3 a ' , q, 

or 

shown m 

23 
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These three equilibrium equations can be rewritten and expressed in matrix 

form as 

Considering free body diagrams of each node separately, represented by the 

following figures, 

k, 

2 

the equilibrium equations are k]o] = F] 

k202 - k]o] -k303 = 0 

k303 - kt04 = F3 

These equations, expressed in terms of nodal displacements q, are similar to 
the equations obtained earlier by the potential energy approach. 

Example 1.9 

Determine the displacements of nodes of the spring system (Fig. 1.13). 

40 N/mm 30 N/mm 

~: VN 2 ~N----+t----13 VN 4 ~ 60 N 

~ VN vV:;----J~ 50 N/mm 

60N/mm 

FIGURE 1.13 Example of a 4-noded spring system 
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Solution 

Total potential energy of the system is given by 

(
1 2 1 2 1 2 1 2) ( ) 1[= -klol +-k202 +-k303 +-k404 + -F3q3 -F4q4 
2 2 2 2 

where q2, q3 , q4 are the three unknown nodal displacements. 

At the fixed points 

ql = q5 = 0 

Extensions of the four springs are given by, 

01 = q2 - q I ; 02 = q3 - q2 ; 03 = q4 - q3 ; 04 = q3 - q5 

For equilibrium of this 3-00F system, 

07t =-6- for i = 2,3,4 
8q, 

07t 
or -=klq2 -k2(q3 -qJ=O 

8q2 

07t 
-=k2(q3 -q2)-k3(q4 -qJ+k4q3 -F3 =0 
8q3 

07t 
-=k3(q4 -q3)-F4 =0 
8q4 

These equilibrium equations can be expressed in matrix form as 

[kJ + k, -k2 

-~31{::}=F } -k2 k2 + k3 + k4 

0 -k3 k3 q4 F4 

[40+30 -30 

-~o]{::}=Fo} or -30 30+50+60 

0 -50 50 q4 60 

Substituting 

F4 (60) q4 =-+q3 = - +q3 =1.2+q3 
k3 50 

from eq. (c) 

..... (a) 

..... (b) 

..... (c) 

25 
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and k2q3 _ 30q3 _ 3q3 
q2=k

1
+k 2 -(30+40)- 7 

from eq. (a) 

in eq. (b), we get 

k2 [q3 - 3~3 ]-k3 [1.2+q3]+k4.q3 -F3 =0 

which gives, 
and then, 

WHYFEM? 

q3 = 2.0741 mm 
q2=0.8889mm; q4=3.2741 mm 

The Rayleigh-Ritz method and potential energy approach are now of only 
academic interest. For a big problem, it is difficult to deal with a polynomial 
having as many coefficients as the number of OOF. FEM is a better 
generalization of these methods and extends beyond the discrete structures. 
Rayleigh-Ritz method of choosing a polynomial for displacement field and 
evaluating the coefficients for minimum potential energy is used in FEM, at the 
individual element level to obtain element stiffness matrix (representing load
displacement relations) and assembled to analyse the structure. 

1.6 ORIGIN OF FEM 

The subject was developed during 2nd half of 20th century by the contribution of 
many researchers. It is not possible to give chronological summary of their 
contributions here. Starting with application of force matrix method for swept 
wings by S. Levy in 1947, significant contributions by J.H.Argyris, 
H.L.Langhaar, R.Courant, MJ.Turner, R.W.Clough, R.J.Melosh, 
J.S.Przemieniecki, O.C.Zienkiewicz, J.L.Tocher, H.C.Martin, T.H.H.Pian, 
R.H.Gallaghar, J.T.Oden, C.A.Felippa, E.L.Wilson, K.J.Bathe, R.O.Cook etc ... 
lead to the development of the method, various elements, numerical solution 
techniques, software development and new application areas. 

Individual member method of analysis, being over-conservative, provides a 
design with bigger and heavier members than actually necessary. This method 
was followed in civil structures where weight is not a major constraint. Analysis 
of the complete structure was necessitated by the need for a better -estimation of 
stresses in the design of airplanes with minimum factor of safetyiand, hence, 
minimum weight), during World War-II. Finite element method, popular as 
FEM, was developed initially as Matrix method of structural analysis for 
discrete structures like trusses and frames. 
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FEM is also extended later for continuum structures to get better estimation 

of stresses and deflections even in components of variable cross-section as well 
as with non-homogeneous and non-isotropic materials, allowing for optimum 

design of complicated components. While matrix method was limited to a few 
discrete structures whose load-displacement relationships are derived from basic 

strength of materials approach, FEM was a generalisation of the method on the 

basis of variational principles and energy theorems and is applicable to all types 

of structures - discrete as well as continuum. It is based on conventional theory 

of elasticity (equilibrium of forces and Compatibility of displacements) and 

variational principles. 

In FEM, the entire structure is analysed without using assumptions about the 

degree of fixity at the joints of members and hence better estimation of stresses 
in the members was possible. This method generates a large set of simultaneous 

equations, representing load-displacement relationships. Matrix notation is 
ideally suited for computerising various relations in this method. Development 

of numerical methods and availability of computers, therefore, helped growth of 
matrix method. Sound knowledge of strength of materials, theory of elasticity 

and matrix algebra are essential pre-requisites for understanding this subject. 

1..7 PRINCIPLE OF FEM 

In FEM, actual component is replaced by a simplified model, identified by a 

finite number ~f elements connected at common points called nodes, with an 
assumed behaviour or response of each element to the set of applied loads, and 
evaluating the unknown field variable (displacement, temperature) at these 

finite number of points. 

Example 1.10 

The first use of this physical concept of representing a given domain as a 

collection of discrete parts is recorded in the evaluation of 1t from superscribed 
and inscribed polygons (Refer Fig. 1.14) for measuring circumference of a 
circle, thus approaching correct value from a higher value or a lower value 

(Upper boundsiLower bounds) and improving accuracy as the number of sides 
of polygon increased (convergence). Value of 1t was obtained as 3.16 or ]0112 

by 1500 BC and as 3.1415926 by 480 AD, using this approach. 

27 
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Case (a) Inscribed polygon Case (b) Superscribed polygon 

FIGURE 1.14 Approximation of a circle by an inscribed and a superscribed polygon 

Perimeter of a circle of diameter 10 cm = nO = 31.4 cm 

Case-A : The circle of radius 'r' is now approximated by an inscribed 

regular polygon of side's'. Then, using simple trigonometric concepts, 
the length of side's' of any regular n-sided polygon can now be obtained 
as s = 2 r sin (360/2n). Actual measurements of sides of regular or irregular 
polygon inscribed in the circle were carried out in those days, in the absence of 
trigonometric formulae, to find out the perimeter. 

With a 4-sided regular polygon, perimeter = 4 s = 28.284 

With a 8-sided regular polygon, perimeter = 8 s = 30.615 

With a 16-sided regular polygon, perimeter = 16 s = 31.215 

approaching correct value from a lower value, as the number of sides of the 
inscribed polygon theoretically increases to infinity. 

Case-B : The same circle is now approximated by a superscribed polygon of 

side's', given by 

Then, 

s = 2 r tan (360/2n) 

With a 4-sided regular polygon, 

With a 8-sided regular polygon, 

With a 16-sided regular polygon, 

perimeter = 4 s = 40 

perimeter = 8 s = 33.137 

perimeter = 16 s = 31.826 

approaching correct value from a higher value, as the number of sides of the 
circumscribed polygon theoretically increases to infinity. 
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A better estimate of the value of 1t (ratio of circftmference to diameter) was 
found by taking average perimeter of inscribed and superscribed polygons, 
approaching correct value as the number of sides increases. 

Thus with a 4-sided regular polygon, perimeter = (40+28.284) / 2 = 34.142 

With a 8-sided regular polygon, perimeter = (33.137+30.615) /2 = 31.876 

With a 16-sided regular polygon, perimeter = (31.826+31.215) / 2 = 31.52C 

Example 1.11 

In order to understand the principle of FEM, let us consider one more example, 
for which closed form solutions are available in every book of 'Strength of 
materials'. A common application for mechanical and civil engineers is the 
calculation of tip deflection of a cantilever beam AB of length 'L' and subjected 
to uniformly distributed load 'p'. For this simple case, closed form solution is 
obtained by integrating twice the differential equation. 

EJd
2
y =M 

dx 2 

and applying boundary conditions 

y = 0 and dy = 0 at x = 0 (fixed end, A), 
dx 

_ pL4 

we get, at x - L, Y max =--
8EI 

This distributed load can be approximated as concentrated loads 
(Ph P2, ••• PN) acting on 'N' number of small elements, which together form the 
total cantilever beam. Each of these concentrated loads is the total value of the 
distributed load over the length of each element (PI = P2 = ... = PN = P L / N), 
acting at its mid-point, as shown in Fig 1.15. Assuming that the tip deflection 
(at B) is small, the combined effect of all such loads can be obtained by linear 
superposition of the effects of each one of them acting independently. We will 
again make use of closed form solutions for the tip deflection values of a 
cantilever beam subjected to concentr1:lted loads at some intermediate points. 

Case 1 : Cantilever with 
distributed load 

B 

1\ P 
~- ( 

Case 2 : Cantilever with 
many conc. loads. 

B 

FIGURE 1.15 Cantilever beam with distributed load approximated by many 
concentrated loads 

29 
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Tip deflection of the cantilever when subjected to concentrated load PJ at a 
distance LJ from the fixed end is given by 

YB = (Y)J + (dY) .(L - LJ) 
dx J 

Closed form solutions for (y)J and (dy/dx)J can be obtained by integrating the 
beam deflection equation with appropriate boundary conditions, as 

_p Lj 
YJ - J 3 EI 

(
dY) _ P L~ 
dx J - J 2 EI 

Deflection at B, YB, due to the combined effect of all the concentrated loads 
along the length of the cantilever can now be obtained, by linear superposition, 
as 

YB = [(Y), + (dy/dx), (L - L,)] + [(Y)2 + (dy/dx)2 (L - L2)] + ... + 
[(Y)N + (dy/dx)N (L - LN)] 

The results obtained with different number of elements are given in the table 
below, for the cantilever of length 200 cm, distributed load of 50 N/cm and 
EI = 109 N cm2

• 

S.No. No. of elements Tip displacement, YB (cm) 

1 3 9.815 

2 4 9.896 

3 5 9.933 

4 6 9.954 

5 8 9.974 

6 to 9.983 

7 15 9.993 

8 20 9.996 

The exact value obtained for the cantilever with uniformly distributed load, 
from the closed form solution, is YB = 10.0 cm. It can be seen, even in this 
simple case, that the tip deflection value approaches true solution from a lower 
value as the number of elements increases. In other words, the tip deflection 
value even with a small number of elements gives an approximate solution. 

This method in this form is not useful for engineering analysis as the 
approximate solution is lower than the exact value and, in the absence of 
error estimate, the solution is not practically usefuL 
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FEM approach, !lascd on minimum potential energy theorem, convergel' to 
the correct soluti(Jn frtlm a hig/rer value as the numhcr of elements in the 
model increases. While the number of elements used in a model is selected by 
the engineer, based on the required accuracy of solution as well as the 
availability of computer with sufficient memory, FEM has become popular as it 
ensures usefulness of the results obtained (on a more conservative side) even 
with lesser number of elements. 

Finite Element Analysis (FEA) based 6n FEM is a simulation, not reality, 
applied to the mathematical model. Even very accurate FEA may not be good 
enough, if the mathematical model is inappropriate or inadequate. A 
mathematical model is an idealisation in which geometry, material properties, 
loads and/or boundary conditions are simplified hased on the analyst's 
understanding of what features are important or unimportant in obtaining the 
results required. The error in solution can result from three different sources. 

Modelling error - associated with the approximations made to the real 
problem. 
Dlscretrsation error - associated with type, size and shape of finite elements 
used to represent the mathematical model; can be reduced by modifYing mesh. 
Numerical error - based on the algorithm used and the finite precision of 
numbers used to represent data in the computer; most softwares use double 
precision for reducing numerical error. 

It is entirely possible for an unprepared software user to misunderstand the 
problem, prepare the wrong mathematical model, discretise it inappropriately, 
fail to check computed output and yet accept nonsensical results. FEA is a 
solution technique that removes many limitations of classical solution 
techniques; but does not bypass the underlying theory or the need to devise a 
satisfactory model. Thus, the accuracy of FEA depends on the knowledge of 
the analyst in modelling the problem correctly. 

1.8 CLASSIFICATION OF FEM 

The basic problem in any engineering design is to evaluate displacements, 
stresses and strains in any given structure under different loads and boundary 
conditions. Several approaches of Finite Element Analysis have been developed 
to meet the needs of specific applications. The common methods are: 

Displacement method - Here the structure is subjected to applied loads and/or 
specified displacements. The primary unknowns are displacements, obtained by 
inversion of the stiffness matrix, and the derived unknowns are stresses and 
strains. Stiffness matrix for any element can be obtained by variational 
principle, based on minimum potential energy of any stable structure and, 
hence, this is the most commonly used method. 

3:1 
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Force method - Here the structure is subjected to applied loads and/or 

specified displacements. The primary unknowns are member forces, obtained 

by inversion of the flexibility matrix, and the derived unknowns are stresses and 

strains. Calculation of flexibility matrix is possible only for discrete structural 
elements (such as trusses, beams and piping) and hence, this method is limited 

in the early analyses of discrete structures and in piping analysis 

Mixed method - Here the structure is subjected to applied loads and/or 

specified displacements. The ·method deals with large stiffness coefficients as 
well as very small flexibility coefficients in the same matrix. Analysis by this 

method leads to numerical errors and is not possible except in some very special 

cases. 

Hybrid method - Here the structure is subjected to applied loads and stress 

boundary conditions. This deals with special cases, such as airplane dour frame 
which should be designed for stress-free boundary, so that the door can be 
opened during flight, in cases of emergencies. 

Displacement method is the most common method and is suitable for solving 

most of the engineering problems. The discussion in the remaining chapters is 

confined to displacement method. 

1.9 TYPES OF ANALYSES 

Mechanical engineers deal with two basic types of analyses for discrete and 
continuum structures, excluding other applicati.on areas like fluid flow, 
electromagnetics. FEM helps in modelling the component once and perform 
both the types of analysis using the same model. 

(a) Thermal analysis - Deals with steady state or transient heat transfer by 

conduction and convection, both being linear operations while radiation 

is a non-linear operation, and estimation of temperature distribution in the 
component. This result can form one load condition for the structural 

analysis. 

(b) Structural analysis - Deals with estimation of stresses and 

displacements in discrete as well as continuum structures under various 
types of loads such as gravity, wind, pressure and temperature. Dynamic 

loads may also be considered. 
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1.:1.0 SUMMARY 

• Finite Element Method, popularly known as FEM, involves 
analysis of the entire structure, instead of separately considering 
individual elements with simplified or assumed end conditions. It 
thus helps in· a more accumte estimate of the stresses in the 
members, facilitating optimum design. 

• FEM involves idealizing the given component into a finite 
number of small elements, connected at nodes. FEM is an 
extension of Rayleigh-Ritz method, eliminating the difficulty of 
dealing with a large polynomial representing a suitable 
displacement field valid over the entire structure. Over each finite 
element, the physical process is approximated by functions of 
desired type and algebraic equations, which relate physical 
quantities at these nodes and are developed using variational 
approach. Assembling these element relationships in the ·proper 
way is assumed to approximately represent relationships of 
physical quantities of the entire structure. 

• FEM is based on minimum potential energy theorem. It 
approaches true solution from a higher value, as the number of 
elements increases. Thus, it gives a conservative solution even 
with a small number of elements, representing a crude 
idealisation. 

OBJECTIVE QUESTIONS 

1. The solution by FEM is 

(a) always exact 

(c) sometimes exact 

2. Discrete analysis covers 

(a) all 2-D trusses & frames 

(b) all 3-D trusses & frames 

(b) mostly approximate 

(d) never exact 

(c) all 2-D and 3-D trusses & frames 

(d) no tfUsses; only frames 

33 
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3. FEM is a generalization of 
(a) Rayleigh-Ritz method 

(c) Finite difference method 

(b) Weighted residual method 

(d) Finite volume method 

4. Variational principle is the basis for 

(a) Displacement method (b) Weighted residual method 

(c) Finite difference method (d) Finite volume method 

5. Displacement method is based on minimum 
(a) potential energy 

(b) strain energy 

(c) complementary strain energy 

(d) work done 

6. Hybrid method is best suited for problems with prescribed 

(a) displacements (b) forces (c) stresses (d) temperature 

7. Primary variable in FEM structural analysis is 

(a) displacement (b) force (c) stress (d) strain 

8. Stress boundary conditions can be prescribed in 

(a) displacement method (b) hybrid method 

(c) force method {d) mixed method 

9. Prescribed foads catt40rm input data in 
(a) displacement method (b) hybrid method 

(c) force method (d) mixed method 

10. Stiffness matrix approach is used in 

(a) displacement method (b) stress method 

(c) force method (d) mixed method 

11. Displacement method of FEM for structural analysis gives 

(a) stiffness matrix (b) flexibility matrix 

(c) conductance matrix (d) mixed matrix 

12. Flexibility matrix approach is used in 

(a) displacement method (b) stress method 

(c) force method (d) mixed method 



CHAPTER 2 

MATRIX OPERATIONS 

FEM deals with a large number of linear algebraic equations, which can be 
conveniently expressed in matrix form. Matrices are also amenable to computer 
programming. Knowledge of matrix algebra is essential to understand and solve 
problems in FEM. A brief review of matrix algebra is given below for a good 
understanding of the remaining text. 

A matrix is a group of m x n numbers (scalars or vectors) arranged in 
III number of rows and n number of columns. It is denoted by [A] or [A]mxn 
IIldicating matrix of 'm' rows and 'n' columns or matrix of order m x n. Each 
dc:ment of the matrix is identified by a'J' located in the i'h row andj'h column. 

all a12 a13 a l4 a ln 
a 21 a 22 a 23 a 24 a 2n 

[A]= a 31 a 32 a 33 a34 a3n ••.•• (2.1) 

amI a m2 a m3 a m4 a mn 

2.2- TYPES OF MATRICES 

Based on the number of rows and columns as well as on the nature of elements, 
some matrices are distinctly identified as follows. The symbol ''1/' indicates 
'for all'. 

(a) Square matrix is a matrix of same number of rows and columns and is 
usually indicated as [Aln x n or square matrix of order n i.e., matrix with 
m=n. 
The elements from left top to right bottom .i.e., all .... an n fonn the leading 
diagonal. 
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(b) Row matrix is a matrix of only one row and is usually indicated as {A} T 

i.e., matrix with m = I. 

(c) Column matrL~ (or vector) is a matrix of only one column and is usually 
indicated as {A} i.e., matrix with n = I. 

(d) Bamled matrix i ... a square matrix whose off-diagonal elements beyond half 
bandwidth from the diagonal element are all zeroes i.e., a'l = 0 V j > i + h 
and V j < i - h, 
where h + I is half bandwidth and 2h + I is the bandwidth 
For example, a 5 x 5 matrix with half bandwidth of2 is given by 

all a l2 a 13 0 0 

a 21 a 22 a 23 a 24 0 

[A] = a 31 a 32 a33 a34 a 35 •••.• (2.2) 

0 a 42 a 43 a 44 a 45 

0 0 a 53 a 54 a 55 

(e) Diagonal matrix is a banded matrix of bandwidth equal to 1 
I.e., alJ = 0 Vi :t:j or Banded matrix with h ~ 0 .•... (2.3) 

For example, a diagonal matrix of order 5 is given by 

all 0 0 0 0 

0 a 22 0 0 0 

[A] = 0 0 a 33 0 0 ...•. (2.4) 

0 0 0 a 44 0 

0 0 0 0 a 55 

(f) Identity matrix is a diagonal matrix with each diagonal element equal to 
one and is usually indicated by [I] for any square matrix of order n. 

i.e., all = I Vi = j and alj = 0 Vi :t: j ..••• (2.5) 

(g) Transpose of matrix, written as [A]T, is the matrix with each element all of 
matrix [A] written in l' row and ilh column or interchanging its rows and 
columns. 

i.e., alJ of matrix [A] = all of matrix [A]T 

It can be seen that ....• (2.6) 

(h) Symmetric matrix, defined only for square matrices has elements 
symmetric about its leading diagonal i.e., all = all 

It can be seen that [Af = [A] ..... (2.7) 
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(i) Skew-symmetric matrix, also defined for square matrices only, has 
elements equal m magnitude but opposite in sign, about the leading 
diagonal, 

i.e., alj = - ajl and elements on leading diagonal all = 0 

It can be seen that [A]T = - [A] •...• (2.8) 

2.2 MATRIX ALGEBRA 

Common mathematical operations on matrices are 

(a) Addition of matrices A and B (defined only when A and B are of same 
order) is addition of corresponding elements of both the matrices. If C is the 
resulting matrix, 

[C] = [A] + [B] or ••••• (2.9) 

(b) Multiplication of a matrix A by a scalar quantity's' is multiplication of 
each element of matrix [A] by the scalar s 
i.e., s[A] = [s alj] ..... (2.10) 
Same holds good for division of a matrix A by a scalar's', since division by 

's' is equivalentto multiplication by G) i.e., [~t [ as" 1 
(c) Matrix multiplication is defined only when number of columns in the first 

matrix A equals number of rows in the second matrix B and is, usually, not 
commutative. Element Clj is the sum of the products of each element of 
i'h row of matrix A with the corresponding element of the jlh column of 
matrix B. 
i.e., [A]m x 0 [B]o x p = [C]m x p 

where alj bjk = Cik V i = 1, m; j = 1, n; k = 1, P ....• (2.11) 

It can be seen that for any matrix [A] and identity matrix [I], both of order 
n x n, 

LAUI] = [IUA] = [A] 

(d) Transpose of product of matrices 

([AUBUC])T = [Cf [Bf [A]T 

••••• (2.12) 

..... (2.13) 

(e) Differentiation of a matrix, each element of which is a function of x, is 

differentiation of each element w.r.t. x 

i.e., d[B(x)] = [dbij(X)] 
dx dx 

..... (2.14) 
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(t) Integration of a matrix, each element of which is a function of X, is integration 
of each element w.r.t. x, 

i.e., ..... (2.15) 

Matrix algebra differs from algebra of real numbers in some respects 

For example, matrix multiplication is, in general, not commutative even if 
both the matrices are of the same order and square, 

I.e., [A][8]:;l: [8][A] 

Matrix algebra also differs from vector algebra in some respects. 

Vector product is defined as a dot product (giving a scalar result) or a cross 
product (giving a vector, perpendicular to both the vectors, as the result) 
whereas matrix multiplication is defined in only one way. 
Trace of a matrix, defined for any square matrix of order m, is a scalar quantity 
and is equal to the sum of elements of its leading diagonal. 

I.e., 
m 

Tr[A]=a" +a22 + ... +amm = La" 
1=' 

..... (2.16) 

Minor Mlj of a square matrix [A] is the determinant (defined in Section 2.3) of 
sub matrix of [A] obtained by deleting elements of ith row and jth column from 
[A]. 

Cofactor C IJ ofa square matrix [A] = (-ltJ Mlj 

Matrix [C] with elements C IJ is called Cofactor matrix 

Adjoint of matrix [A] is defined as [C]T and is written as Adj [A] or [AIJ ] 

Matrix approach is followed in FEM for convenience of representation. 
Conventionally, stress components, strain components, displacement 
components etc., are called stress vector, strain vector, displacement vector etc.; 
but they actually represent column matrices. Each component of these column 
matrices is a vector quantity representing the corresponding quantity in a 
particular direction. Hence, matrix algebra, and not vector algebra, is applicable 
in their case. 

Quadratic form - If [A] is an (n x n) matrix and {x} is a (n x I) vector, then 
the scalar product {x} T[A]{x} is called a quadratic form (having terms like X,2, 
X22, ... and X,X2, X,X3, ... ). 

Example 2.1 

Express q =xj -6X2 +3x~ +5XjX2 in the matrix form !XTQX+CTX 
2 
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Solution 

From the data, it can be concluded that vector x has two elements XI and X2. 
Therefore, matrix Q is of order 2 x 2 and C must be a vector of order 2. 

1 TTl [ l[qll -x Qx+C x =- XI X2 
2 2 q21 

Comparing these coefficients with those of the given expression 

XI- 6X2 + 3Xl2 + 5XIX2 

we get CI = I; C2= -6; qll = 6; q22 = 0; qJ2 + q21 = 10 or qJ2 = q21 = 5 

:.XI -6X2 +3x~ +5XIX2 =~[XI x21[6 5]{XI}+[1 -61{xl} 
2 5 0 x 2 x 2 

2.3 DETERMINANT 

It is a scalar quantity defined only for square matrices and is written as I A I or 
det[ A]n x n. It is defined as the sum of the products (-1 t j a.J M.j where aiJ are the 
elements along anyone row or column and M.j are the corresponding minors. 

For example, if[A] is a square matrix of order 2, 

expanding by 1 st row 

or expanding by 1 st column 

If [A] is a square matrix of order 3, 

all a l2 a l3 
a 21 a 22 a 23 = (-1)1+1 all All + (_1)1+2 al2 AI2 + (_1)1+3 al3 AI3 

a31 a32 an 

_ expanding by 1 st row 

39 
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(a) 

(b) 

a a I a - (1)1+1 22 23 +( 1)1+2 21 - - all - an 
a 32 a 33 a 31 

= all (an.a33 - a23.a32) - al2 (a2\.a33 - a23.a31) + au (a2\.an - an.a31) 

It can also be expressed as 

all a l2 a 13 
a 21 a 22 an = (-1)1+1 all All + (-li+ 1 a21 A21 + (-I )311 a31 A31 expanding 

a 31 a 32 a 33 

by 1 sl column 

(-l)I+l all an a23I+(_1)2+la21 a l2 aI31+(_1)31Ia31 a\2 a131 
an a 33 a 32 a 33 an an 

= all (an.a33 - an.an) - a21 (a\2.a33 - al3.a32) + a31 (al2.a23 - al3.an) 

and so on. 

It can be seen that, 

Det ( [A] [8Hc] ) = Det [A] . Det [8] . Det [C] ..... (2.17) 

If[L] is a lower triangular matrix with 1,,= 1 and III = 0 Vi> j , 

Det [L] = IIIC II + 112C12 + I13C13 = IIIC II = III .( In. /" - 0./32 ) = /11' /22, 133 

=1 

(c) In the same way, Det [I] = 1 

(d) If [A] = [LHD] [L]T, 

where [L] is a lower triangular matrix with 1,,=1 and I'J = 0 Vi> j 

and [0] is a diagonal matrix 

then, 

Det [A] = Det [L] . Det [0] . Det [L]T = Det [0] ..... (2.18) 

(e) The determinant of a matrix is not affected by row or column 

modifications. 

A matrix whose determinant is zero is defined as a singular matrix 

Example 2.2 

Given that the area of a triangle with corners at (X"YI), (X2,Y2) and (X3,Y3) can 

be written in the form, 
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II Xl 

Area = ~ Det 1 x 2 

I X3 

determine the area of the triangle with corners at (1,1), (4,2) and (2,4) 

Solution: 

Area = Y2 I 4 2 = ~ 0 3 

240 

with row modifications, 
R2 = R2 - Rl 

3 and R3 = R3 - Rl 

1 
= - (I x (3 x 3 - 1 xl) - 0 x (I x 3 - 1 xl) + 0 x (1 x I - 3 xl» = 4 

2 

2.4 INVERSION OF A MATRIX 

It is defined only for a square and non-singular matrix and is defined as 

[Ar l = Adj [A] / Det [A] = [Cf / I A I ..... (2.19) 

It can be seen that product of any square matrix and its inverse is a unity 
matrix and the unity matrix being symmetric, the product is commutative. 

i.e., [A]"I[A] = [A][Ar l 
= [I] ..... (2.20) 

A necessary and sufficient condition for /Arl to exist is that there be no 
non-zero vector {x} such that [A] {x} = {O}. The converse is also true. If 
there exists a non-zero vector {x} such that [A] {x} = {O}, then [A] does not 
have an inverse. 

2.5 METHODS OF SOLUTION OF SIMULTANEOUS EQUATIONS 

Finite element method gives rise to a set of n independent equations m n 
unknowns, expressed in matrix form as [K] {x} = {P}, where [K] is the stiffness 
matrix, {x} is the displacement vector and {P} is the applied load vector. 

This system is called a homogeneous system if all the elements of {P} are 
zero. This system has a trivial solution Xl = X2 = X3 .•.•••• = Xn = O. 

It is called a non-homogeneous system if at least one element of {P} is non-zero. 

The system is said to be consistent if [K] is a square, non-singular matrix. 

Most engineering problems generate a consistent system of equations and 
have a unique solution for the displacements {x}. F 
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These unknowns {x} can be evaluated by two basic approaches: 

(a) Calculating inverse of the stiffness matrix [K] and multiplying by the 

load vector i.e., {x} = [Kr1 {P} 

or 

(b) Solving directly the system of equations [K] {x} = {P}. 

These methods are broadly classified as: 

(i) direct methods which give exact solution while requiring more 
computer memory, and 

(ii) iterative methods which give approximate solutions with 

minimum computer memory requirement. 

Some of the numerical methods, based on these approaches, are. 

presented here. 

2.5.1 By INVERSION OF THE COEFFICIENT MATRIX 

(a) Method of Co/actors - It involves calculation of n x n cofactors and 
determinant for a n x n matrix [A]. It is a costly process in terms of number 

of calculations and is not commonly used with large sized matrices in finite 
element analysis. 

Example 2.3 

Find the inverse of a square matrix [A] by the method of cofactors, if 

[AJ~ r~ ~ :1 
Solution 

3 
11 = 3 x 4 - 1 x 2 = 10 . Mil = 

2 4 ' 

4 ~I = 4 x 4 - 1 x 1 =15 MJ2= 

4 ~I = 4 x 2 - 3 x 1 = 5 M13= 
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Similarly, 

3 
41 = 4' 

2 
41 =4 . 

2 ~I= 1 M21 = M22 = M23= 
2 4 ' 4 ' 1 

3 
41 =-9' 

2 ~1=-14;M33=~ ~I =-6 M31 = M32 = 
3 1 ' 4 

IAI = all MII - al2 MI2 + al3 MI3 = 2 x 10 - 3 x 15 + 4 x 5 = 20 - 45 + 20 =-5 

[A]-I = Adj[A] = _1 -M M -M =-(.!.) -15 4 14 

r 
Mil -M21 M3lj r 10 -4 -9j 

I A I IAI 12 22 32 5 
M 13 - M 23 M 33 5 - 1 - 6 

(b) Gauss Jordan method of inverting a square matrix [A] involves adding an 

identity matrix [I] of the same order as [A] and carrying out a sequence of 

row operations like 

R/I)= Rl/all ; R2(1) = R2 - a21 RI(I) ; ....... R.,(I) = Rn - ani R/I) 

R (2) - R (I)/a . R (2) = R (I) - a R (2) . R (2) = R (I) - a R (2) 2 - 2 22, I I 12 2 ,. .. ..... n n n2 2 

R (3) - R (2)/a • R (3) = R (2) - a R (3) . R (3) = R (2) - a R (3) etc 3 - 3 33, I I 13 3 ,....... n n n3 3 .. 

on this combination such that [A] is transformed to [I]. This will result in 

the identity matrix [I] initially appended to [A] getting transformed into 

[Arl 

Example 2.4 

Find inverse of matrix [A] by Gauss Jordan method, if 

[A]=r~ ~ ~l 
1 2 4J 

Solution 

[A: I]=[~ 
. 1 

3 4 

3 1 

2 4 
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Row operations R,(l) = R/all; R2(1) = R2 - a2l RI(I) and R3(1) = R3 - a31 RI(I) 
will give 

3 
2 

2 
= 0 -3 -7 

o 1 
2 

2 

2 
-2 

1 

2 

o 0 

1 0 

o 

Row operations R}2) = R2(1)/an; RI(2) = RI(I) -a12 R2(2) and R3(2) = R3(1) - an 
R2(2) will give 

0 
3 1 1 

0 -- -- -
2 2 2 

0 
7 2 1 

0 - - --
3 3 3 

0 0 
5 5 1 
6 6 6 

Row operations R3 (3) = R3(2)/a33 R (3) - R (2) a R (3) I - I - 13 3 and R (3) - R (2) 
2 - 2 

R (3) Oil ° - a23 3 WI gIve 

0 0 -2 
4 9 

5 5 

0 0 3 
4 14 

== [I: A -I] --
5 5 

0 0 -1 
1 6 
-
5 5 

Thus, 

-2 
4 9 

5 5 l 10 
-:-4 -9j [A ]-1 == 3 

4 14 =-G) -I~ 4 14 --
5 5 
1 6 -1 -6 

-1 
5 5 

which is same 'as the inverted matrix of [A] obtained by the method of 
cofactorso 

2.5.2 DIRECT METHODS 

Many engineering problems in FEM will result in a set of simultaneous 
equations represented by [K] {x} = {P} where [K] is the stiffness matrix of the 
entire structure and {x} is the vector of nodal displacements due to the applied 
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loads {Pl. In many situations, a component may have to be analysed for 
multiple loads, represented by [Pl. Corresponding to each column of [P], 
representing one set of nodal loads, a particular solution vector {x} exists. 
Matrix inversion approach is much faster in such cases than the direct solution 
techniques presented below. 

(a) Cramer's Rule gives direct solution to a set of simultaneous equations 
[A]{x} = {B}. 

In a system of n equations in n unknowns, this method involves in 
calculating n + I determinants of n x n matrices. It is a very costly method 
for large sized problems and is, therefore, not popular. 

x =~. x =IA21. x )Anl 
I IAI' 2 IAI' ...... n IAI 

where [AI] is obtained by replacing column i of matrix [A] with the elements 
of {B}. 

Example 2.5 

Solve the following system of equations 

x+y+z=II 

2x-6y- z= 0 

3x +4y+ 2z= 0 

Solution 

The coefficient matrix is 

r 
I I 11 

[A]= 2 -6 -I 

3 4 2 

and the vector of constants is {B} = [11 0 0 ] T 

Then, 

III I 11 
[A1]= 0 -6 -I ; 

o 4 2 

and 

1 111 
-6 0 

4 0 

IAI= I [(-6) x 2-(-1) x 4] -I [(2) x 2-(-1) x 3] +1 [2 x 4-(-6) x 3] = II 



46 FINITE ELEMENT ANALYSIS 

IAII=II [(-6)x2-{-I)x4]-0[1 x2-4x 1]+0[1 x (-1)-(-6) x 1]=-88 

IA21=-11 [2 x 2-(-1) x 3] +0 [I x 2-3 x 1] -0 [I x (-1)-2 x I] = -77 

IA31=11 [2x4-(-6)x3]-0[1 x4-3x 1]+0[1 x(-6)-2x 1]= 286 

Therefore, x=~=- 88 =-8 
1 A 1 II 

and 

_I A21_ 77 - 7 y -- -- -
1 A 1 II 

z = 1 A3 1 = 286 = 26 
1 A 1 II 

(b) Gauss Jordan method for solving a set of non-homogeneous equations 
involves adding the vector of constants {B} to the right of square matrix 
[A] of the coefficients and carrying out a sequence of row operations 
equivalent to multiplication with [Arl like 

R (1)- Ria . R (I) - R a R (I). R (I) - R a R (I) I - I II , 2 - 2 - 21 I , ....... 0 - 0 - 01 I 
R (2) = R (I)/a . R (2) = R (I) _ a R (2) . R (2) = R (I) _ a R (2) 2 2 22, I I 12 2 ,. . . . . . .. 0 0 02 2 
R (3) = R (2)/a . R (3) = R (2) _ a R (3) . R (3) = R (2) _ a R (3) etc 3 3 33, I I 13 3 ,. . • ••• 0 0 03 3 .. 

on this combination such that [A] is transformed to [I]. This will result in 
the vector of constants {8} getting transformed into the solution vector {x} 

I.e. [ A : B ] -7 [I: x ] 

It involves up to 2n 3 multiplications and is a costly method for large matrices 
3 

Example 2.6 

Find the solution to the folIowing set of non-homogeneous equations by 
calculating inverse of matrix [A] by Gauss Jordan method. 

x+y+z=11 
2x-6y-z= 0 
3x +4y+ 2z=O 

Solution 

The set of equations can be expressed in the form [A] {x} = {B} 
where, 

[Al~l~ -: -J {x} ~ {~} and {B) ~ f~l} 



1 

-6 -1 

4 2 
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I~] 
Row operations RJ(J)= RJ/aJJ ; R2(J) = R2 - a2] RJ(J) and R3(J) = R3 - a3J RJ(J) 

will give 

r 
1 1 1: II] 

= 0 -8 -3 : -22 

o 1 -1 : -33 

Row operations R2(2) = R2(1)/a22 ; R/2) = RJ(J) -a]2 R2(2) and R/2) = R3(J) -a32 
R2 (2) will give 

0 
5 33 

8 4 

0 
3 11 

-
8 4 

0 0 
11 143 

-- --
8 4 

Row operations R3(3) = R3(2)/a33 ; RJ{3l = RJ(2) - aJ3 R3(3) and R2(3) = R2(2)-a23 
R3(3) will give 

=r~ ~ ~ 
o 0 

. -8] 
: -7 =[I:x] 

: 26 

Thus, 

which is same as the solution vector {x} obtained by the method of' 
cofactors. 

(c) Gauss elimination method is a direct method for solving [K]{x} = {P} 
where [K] is a square matrix of order n. The method involves reduction of 
the coefficient matrix to upper triangular form and back substitution. 

Example 2.7 

Solve the following system of simultaneous equations by Gauss elimination 
method 
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Solution 

x+y+z=ll 

2x- 6y-z = 0 

3x +4y + 2z= 0 

The given equations can be expressed in matrix form as 

The elements of [K] are reduced to upper diagonal form by the following 
operations, performing on one column at a time. 

Column-1 

gIve 

and 

Column-2 R,= RrR, (k"Ik,,) give [~ 
Back substitution 

Row-3 z=( _1:3)( -1
8
1)=26 

Row-2 _ -22+3.z _ 7 
y- (-8) --

Row-l x=ll-y-z =-8 
1 

which is same as the solution vector {x} obtained by the earlier methods. 

(d) LU factorisation method is based on expressing square matrix [K] as a 
product of two triangular matrices Land U. 

i.e., [K] = [L] [U], 

where [L] is a lower triangular matrix 

and [U] is an upper triangular matrix 
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This method involves n3/3 + n2 operations and thus is an economical method 

for large size problems. There are three variations of this method. 

(i) Doolittle method wherein diagonal elements of lower triangular matrix 
L are equal to I 

Step-1 {P} = [K]{x} = [L][U]{x} = [L]{v} ..... (2.21) 

kll kl2 k13 ... kin 0 0 ... 0 Ull ul2 u13 ... uln 
k21 k22 k23 ... k2n 121 0 ... 0 0 u22 u23 ... u2n 
k31 k32 k33 ... k3n = 131 132 1 ... 0 0 0 U33 ... u3n 

knl kn2 kn3 ... knn Inl in2 In3 ••• 1 0 0 0 ... unn 

The elements of matrices [L] and [U] are obtained using the following 
equations of matrix multiplication 

kll = I . Ull 

kl2 = 1 . Ul2 

kin = 1 . Uln 
k21 = 121 • Ull 

k22 = 121 • Ul2 + 1 . U22 

k23 = 121 . U13 + 1. U23 

k2n = 12l . Uln + 1 . U2n 

and so on 

~ Ull 

~ Ul2 

~ Uln 

=> hi 
~ U22 

~ U23 

~ U2n 

Step-2: Intermediate solution vector {v} is calculated from {P} = [L]{v} 

Pll r I 0 0 ... 0 VI 

P2 121 1 0 ... 0 v2 
. :;i;e 

~:J ~ l::: 
132 1 ... 0 V3 

102 In3···1 Vo 

from which, elements of {v} can be obtained as 

VI = PI 

V2 = P2 -/21 . VI 

V3 = P3 - hi . VI -/32 . V2 and so on 
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Step-3 : Actual solution vector {x} is calculated from {v} = [U]{ x} 

VI UII ul2 ul3 Uln XI 
V2 0 un U23 u2n x2 

I.e., V3 0 0 u33 u3n X3 

vn 0 0 0 Unn Xn 

from which, elements of { x } can be obtained as 
v Xn =_11 _ 

_ (Vn_1 -Un_I'n Xn) 
X n_1 -

Un_I' n-I 

(v n-2 - lI n-2, n-I Xn_1 - Un-2' n Xn) 
X

I1
_ 2 = 

lIn-2' n-2 

Example 2.8 

and so on 

Solve the following system of simultaneous equations by L-U factorisation 
method 

Solution 

x+y+z=ll 

2x-6y-z = 0 

3x +4y+2z= 0 

The coefficient matrix is 

The elements of [L] and [U] are obtained from 

kll = III . UII and III = 1 
kl2 = III . Ul2 and III = 1 
kl3 = Ill. Ul3 and III = 1 
k2l = 12l . Ull 
kn = 12l . Ul2 + In . Un and In = 1 
k23 = 12l . Ul3 + 122 , U23 and In = I 

~ Ull = 1 
~ UI2 = 1 
~ U13= 1 
~ 12l = 2 
~ Un =-8 
~ U23 =-3 
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k32 = hI • u\2 + 132 . U22 ~ 

k33 = /31 • U\3 + h2 • U23 + 133 • U33 and 133 = I ~ 

Thus {P} = IK] {X} = [L] [U] [X] 

Let {P} = [L]{v} 

Then, elements of vector {v} are obtained from 
VI = PI = 11 
V2 = P 2 - hI. VI - = -22 
V3 = P 3 -/31 • VI -/32 . V2 = 143/4 

Actual solution vector {x} is calculated from {v} = [U]{x} 

V3 
z=-

U 33 

y=(V2-U 23 Z} 

u 22 

x= (VI -U I2 y- ul3 z) 
UII 

=26 

=-7 

=-8 

/3\ = 3 
h2 = -118 
U33 = -11/8 

(ii) Crout's method is another factorisation method wherein diagonal 
elements of upper triangular matrix U are equal to 1. The remaining 
procedure is identical to Doolittle method. 

(iii) Cho/esky method is also a direct method for solving [K]{x} = {P}, 
where [KJ is symmetric and positive definite. 

i.e. for any vector {x}, {x} T [A] {x} > 0 

Here, {P}= [K]{x} = [L][L]T {.x} where [LI is a lower triangular matrix 
This method is also a factorisation method except that upper triangular 
matrix [U] is replaced by the transpose of lower triangular matrix [L]. 
Hence, the diagonal elements of [L] will not be equal to I. Since one 
matrix [L] only need to be stored, it requires less memory and is 
especially useful in large-size problems. 
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k1l kl2 k13 ... kIn 111 0 0 ... 0 111 121 131 •.• /nl 

k21 k22 k23 ... k2n 121 122 0 ... 0 0 122 132 ••• / n2 

Step-1 k31 k32 k33 ... k3n 131 132 133 ••• 0 0 0 133 •.• / n3 

knl kn2 kn3 ... knn Inl In2 In3 ···/nm 0 0 o ... /nn 

The elements of matrix [L] are obtained using the following equations of 
matrix multiplication 

kll = 111 . 111 

k12 =/II./2l 

kIn = 111 . Inl 

k21 = 121 • III is same as k12 = III . 12l since [K] IS symmetric and IS 

redundant 

and so on 

k22 = 121 • 12l + 122 • 122 

k23 = 12l . hI + lz2 • 132 

k2n = 12l . lIn + In . 1n2 

Step-2: Intermediate solution vector {v} is calculated from {P} = [L]{v} 

PI III 0 0 ... 0 VI 
P2 121 122 0 ... 0 v2 

i.e., P3 = 131 132 133 ••• 0 V3 

Pn Inl In2 In3 ··.lnn vn 

from which, elements of {v} can be obtained as 

PI vl =-
111 

(P2 -/2l .vl) v2 = 
122 

(P3 -/31 ·VI -132·v2) 
and so on V3 = 

133 
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Step-3: Actual solution vector {x: I~ l:alculated from {v} = [U]{x} 

VI III 121 III In 1 XI 

v 2 0 122 112 'n2 X 2 

I.e v] 0 0 '13 In] X3 

Vn 0 0 0 Inn Xn 

from which, elements of { 0 } can be obtained as 

v 
X =_n 

n Inn 

(v n-I -In n-I X n ) 
X - ' 

n-I - I 
n-I, n-I 

(V n- 2 -/n-I' n-2 Xn_1 -In 'n-2,X n) X -~~--~-=~~~~~~~ 

n-2 - I 
n-2, n-2 

and so on 

(iv) Gauss Jordan method is also similar to Gauss elimination method except 
that back substitution operation is avoided by transforming coefficient 
matrix [K] into a unity (diagonal) matrix, instead of an upper triangular 
matrix. This increases number of operations and hence is not economical. 
However, this method is popular for inversion of matrix [K] which can 
then be used with multiple right side vectors. In such applications, this 

method is more economical. 

2.5.3 ITERATIVE METHODS 

There are many different approaches, but two popular methods are briefly 
explained here. 

(a) Jacobi iteration or Method of simultaneous corrections: In this method 
also, each row is first divided by the corresponding diagonal element to 
make diagonal elements equal to 1. 

Then, {x}(m+ I) = {P} + ( [I] - [K]) {x}(m) 

This form is used for successive improvement of the solution vector from 
an initial approximation {x}(O). No component of {x}(m) is replaced with 

new ones, until all components are computed. All components are 
simultaneously changed at the beginning of each step. For better 

understanding, matrix notation is avoided in the example. 

63 
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Example 2.9 

Solve the following simultaneous equations by Jacobi iteration method. 
20x + y - 2z = 17 
3x + 20y - z = -18 
2x - 3y + 20z = 25 

Solution 

These equations are rewritten as 
x' = (17 - y,-I + 2Z'-I) / 20 
yi = (-18 _ 3X,-1 + Zi-I) / 20 
z' = (25 - 2X,-1 + 3y'-I) / 20 

The values obtained after each step are tabulated below. Starting assumption 
refers to i = 0 

i-> 0 1 2 3 4 5 6 
x 0 0.85 1.02 1.0134 1.0009 1.0000 1.0000 

Y 0 -0.9 -0.965 -0.9954 -1.0018 -1.0002 -1.0000 
z 0 1.25 1.1515 1.0032 0.9993 0.9996 1.0000 

Exact solution is x = I, Y = -1 and z = I 

(b) Gauss Siedel iteration or Method of successive corrections : In this 
method, each row is first divided by the corresponding diagonal element to 
make diagonal elements equal to I. Coefficient matrix is assumed as sum of 
three matrices, [I], [L] and [U] where [I] is the unity matrix, [L] is a lower 
triangular matrix with diagonal elements equal to 0 and [U] is an upper 
triangular matrix with diagonal elements equal to o. 
Then, [K] {x}= ([I] + [L] + [U]){x} = {P}or{x}={P}- [L] {x} - [U] {x} 

This form is used for successive improvement of the solution vector from 
an initial approximation {x} (0) with 

{x}(m+ I) = {P} _ [L] {x}(m) _ [U] {x}(m) 

replacing old terms of solution vector {x} (m) with new ones, as soon as they 
are computed. 

For better understanding, matrix notation is avoided in the example. 

Example 2.10 

Solve the following simultaneous equations by Gauss Siedel iteration method. 

20x + y - 2z = 17 
3x+20y-z=-I8 
2x - 3y + 20z = 25 
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Solution 

These equations are rewritten as 

x' = (17 - y'-I + 2Z'-') / 20 

y' = (-18 - 3x'+ Z'-I) / 20 

z' = (25 - 2x' + 3y') / 20 

Note the change in the superscripts (iteration no), compared to the Jacobi 
iteration method. 

The values obtained after each step are tabulated below. Starting assumption 
refers to i =0 

i-> 0 I 2 3 
x 0 0.85 1.0025 1.0000 

Y 0 -1.0275 -0.9998 -1.0000 

z 0 1.0109 0.9998 1.0000 

Thus, successive correction (Gauss Siedel iteration) method converges much 
faster than simul aneous correction (Jacobi's iteration) method. 

2.6 EIGEN VALVES AND EIGEN VECTORS 

For every square matrix [A], there exist A and {u} such that [A] {u} = A { u} or 

([A] - A[ID {u} = {O} ••••. (2.22) 

For a non-trivial solution, {u} =t- {O}, 

I [A] - A[I] I = 0 is called the characteristic equation ..... (2.23) 

A, s are called eigen values. Eigen values may be real or complex. Most of 
the engineering problems will have real eigen values. The system of n 
independent equations represented by ([A] - A[ID {u} = {O} will have n eigen 
values, where n is the order of the square matrix [A]. Some of them may be 
repeated. {u,} associated with each A, is called an eigen vector and is calculated 
from the system of equations ([A] - A.,[ID {u,} = {O}. 

[A] is a positive definite matrix if all its A, are +ve 

or if {x} T[A]{ x} > 0 for any non-zero vector {x} 

[A] is a positive semi-definite matrix if all its A, are ~ zero 

[A] is an indefinite matrix if its A, are -ve, zero or +ve 

[A] is singular ifand only ifone or more of its eigen values are zero ..... (2.24) 
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Eigen values and eigenvectors of an (n x n) matrix can be obtained by one of 
the two approaches . 

• Solving nth order characteristic equation for the n eigen values and solving 
the !'ystem of n simultaneous equations with each eigen value i for the 
corresponding eigenvector . 

• Solving the system by iterative method through successive 
approximations of the eigen values and corresponding eigenvectors 

Since eigen values in a dynamic system represent the natural frequencies and 
only the first few eigen values representing the dominant modes of vibrations 
are usually required, the latter approach is faster and is more commonly used. 
Both these techniques are explained here through simple examples. 

Example 2.11 

Determine the eigen values for the equation of motion given below 

where ~ and cp, are eigen values and eigen vectors respectively 

Solution 

Characteristic equation is given by 

or Detf2-14'A., 2-4'A., 1 1=0 
I I 2-4'A., 

(2 - 4~) [ (2 - 4'A.,i - I] - [ (2 - 4~) - I] + [I - (2 - 4~) ] 

= (2 - 4~)3 - (2 - 4'A.,) + 2 = 0 

or -64 'A.,3 + 96 'A.,2 - 36 ~ + 4 = -4('A. - 1)(4'A. - 1)2 = 0 
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This cubic equation has three real roots given by 1..=1 ~ ~ 
'4'4 

Example 2.12 

Detennine the eigen values and eigen vectors of the equation 

HA] -A[I]} {q} = 0 where 1..= eigen value and q = eigen vector, if 

A~l: ~ i1 
Solution 

Characteristic equation is given by 

2 

3-1.. 

2 

1 =0 

2-1.. 

(2 - A) [(3 - A) (2 - A.) - (I) (2)] - (2) [(I) (2 - A.) - (1) (1)] 

+(1) [(1).(2)-(3-A.)(1)]=0 

i.e., A.3 - n2 + 11 A. - 5 = 0 

or (A.-5)(A.2-2A.+ 1)=(A.-5)(A.-I)(A.-l)=0 

Therefore, eigen values ofthe matrix are 5, I and 1 

Eigen vectors corresponding to each of these eigen values are calculated by 

substituting the eigen value in the three simultaneous homogeneous equations. 

Corresponding to A. = 5, (2 -5)xl + 2X2 + x) = 0 

XI + (3 - 5)X2 + X3 = 0 

XI + 2X2 + (2 - 5)X3 = 0 

which gives {x} ~ n 
This eigenvector indicates rigid body mode of vibration. 
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Corresponding to A = I, (2 - I )XI + 2X2 + X3 = 0 

XI + (3 - I )X2 + X3 = 0 

XI + 2X2 + (2 - I )X3 = 0 

Since the 2nd and 3rd equations are identical, we have effectively two 
independent equations in three unknowns. Therefore, a unique solution does not 
exist. These equations are satisfied by 

In many practical applications involving many degrees of freedom, only the 
fundamental mode is dominant or important. Iterative methods such as 
Rayleigh's Power method, House holder's tri-diagonalisation method are very 
commonly used for computing few dominant eigen values and eigen vectors. 

Rayleigh's Power method: This iterative method is used for calculating 
fundamental or largest eigen value 

[A] {x} = A {x} is rewritten for iterations as [A] {X}(i-I) = Ai {X}(I) 

Example 2.13 

Calculate largest eigen value for the matrix [A] by Rayleigh's Power method 

[ 
2 -1 0] 

where [A]= -1 2-1 

o -1 2 

Solution 

Let the initial assumption be {x}(O) = [1 0 O]T 

[A](X},OI = H -1 

-!]H={-!}=+H=A'11 {x}']) 
Then, 2 

-1 

[A](x}(]) =[-~ 
-1 

-~ 1 {- ~.5} = r-~} = 2.5 {- ~.8} = A (2) {x}{2l, 2 

-1 2 0 0.5 0.2 
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Eigen values and elgen vectors obtained after successive iterations are 
tabulated below. 

;-> 0 J 2 3 4 5 6 7 

0.87 0.80 0.76 0.74 

{x} 0 -0.5 -0.8 -1 -I -1 -1 -I 

0 0 0.2 0.43 0.54 0.61 0.65 0.67 

1 2 2.5 2.8 3.43 3.41 3.41 3.41 

2.7 MATRIX INVERSION THROUGH CHARACTERISTIC EQUATION 

Cayley-Hamilton theorem states that that every square matrix satisfies its own 
characteristic equation. Let characteristic equation of square matrix [A] be 
given by . 

DCA) = An + CIl- I An-I + Cn-2 A
n-2 + Cn-3 A

n-3 + ...... + CI A + Co = 0 

Then, according to this theorem, 

An + Cn-I An-I + Cn-2 A n-2 + Cn-3 A n-3 + ...... + C I A + Co = 0 

Multiplying throughout by 

A-I All-I +C AI1
-
2 +C An-3 +C An4 + +C I +C A-I = 0 , n-I n-2 n -3 . . . I 0 

or A-I =-[ An-I +Cn-I A
n-2 +Cn-2 An3 +Cn 3 An

-4 + ... +C} I] / Co 

Example 2.14 

Obtain inverse of the following matrix using Cayley-Hamilton theorem 

A=r~ : ;j 
Solution 

Characteristic equation is given by 

r
1- A. 2 3 j 

Det 2 4-A. 5 =0 

3 56-A. 

i.e., A3- 11A.2 -4A+1=0 or A3-1IA2 -4A+I= 0 

Multiplying by A-I, 

59 
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we get A2-11A-4I+A-'= OorA-'= -[A2-IIA-41] 

[
1 

23
1[1 

23
1 [1425311 A2=[A][A]= 2 4 5 2 4 5 = 25 45 56 

3 5 6 3 5 6 3 I 56 70 

Then, 

[14 25 31
1 [I 

2 

;1 + 4[~ 
0 

~1 A-'=-[A 2 -11A-41]=- 25 45 56 +.11 2 4 1 

31 56 70 3 5 0 

+~ 
-3 

-!1 
3 

-1 

Note : Reader is advised to verity the solutions obtained by these various 
methods with the standard check [A] [Ar' = [I], since numerical errors are 
frequently encountered while practicing these methods. 

2.8 SUMMARY 

• A matrix is a group of (m x n) numbers (scalars or vectors) arranged 
in 'm' number of rows and 'n' number of columns. FEM deals with 
solution to a large number of simultaneous equations, which can be 
expressed more conveniently in matrix form as [K] {x} = {P}, where 
[K] is the stiffness matrix of the component which is usually square, 
symmetric and non-singular. 

• This system of equations can be solved for {x} when [K] is a square, 
non-singular matrix, in the form {x} = [Kr' {Pl. Direct methods such 
as Gauss elimination method or factorisation method and iteration 
method like Gauss Siedel method are commonly used techniques for 
the solution of the system of equations. 

• For every square matrix [A], there exist f... and {u} such that 
[K]{ u} = f...{ u}.f... is called the eigen value and {u} is the 
corresponding eigen vector. Stiffness matrix is usually positive 
definite i.e., {u}T[K] {u} > 0 for all non-zero {u}. Eigen values 
represent the natural frequencies and eigen vectors represent natural 
modes of a dynamic system. Iterative methods such as Rayleigh's 
Power method, House holder's tri-diagonalisation method are very 
commonly used for computing the first few dominant eigen values 
and eigenvectors. 



CHAPTER 3 

THEORY OF ELASTICITY 

A brief review of theory of elasticity, with specific reference to applications of 
FEM, is presented here for a clear understanding of the subsequent chapters. For 
a more detailed explanation, the reader may refer to other standard books on this 
subject. 

Every physical component is a three-dimensional solid. However, based on 
the relative dimensions along three coordinate directions and nature of applied 
loads / boundary conditions, they are classified as 1-0, 2-0 or 3-0 components. 
This idealisation helps in analysing the component quickly and at lower cost. 

3.1. DEGREES OF FREEDOM 

The direction in which a point in a structure is free to move is defined as its 
degree of freedom (OOF). In general, any point in a component can move along 
an arbitrary direction in space and rotate about an arbitrary direction, depending 
upon the loads applied on the component. Since specifying this arbitrary 
direction through angles is tedious, the movement and rotation at any point are 
identified by their components in the chosen coordinate system. Thus, in 
Cartesian coordinate system, a point can at best have translation identified by its 
three components along the three coordinate directions X, Y and Z; and rotation 
identified by its three components about the three coordinate directions X, Y 
and Z. Oepending on the way a member is assembled in a structure, some or all 
of its OOF at a point may be fixed or free. Truss members are designed for only 
axial loads and rotational OOFs are not relevant whereas beam is designed for 
bending loads which result in displacement at each point normal to the axis. Its 
derivative or slope is independently constrained and hence is considered as an 
independent OOF. Similarly, in plates subjected to in-plane loads, rotational 
OOFs are not significant and need not be considered as independent OOFs 
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whereas in plates and shells subjected to bending loads, rotational OOF are 
significant and need to be treated as independent OOFs. 

3.2 RIGID BODY MOTION 

It is the motion of entire component or part under the influence of external 
applied loads. Such a rigid body motion, with no relative deformation between 
any two points in the component, cannot induce stresses or strains in a 
component. Since design or analysis of a component involves calculation of 
stresses and strains in a component, any static part with 'n' degrees of freedom 
can not be solved unless it is restrained from moving as a rigid body by 
constraining it at least at one point along each OOF. The number of OOFs to be 
constrained depends on the type of component. For example, a truss has to be 
constrained for rigid body motion along X and Y axes; a plane frame (in X-Y 
plane) has to be constrained along X and Y axes as well as for rotation about Z 
axis; a thick shell has to be constrained along X, Y and Z axes as well as for 
rotation about X, Y and Z axes. In the conventional analysis by closed form 
solution to the differential equation, the rigid body motion is constrained by 
using relevant boundary conditions for evaluating constants of integration. 

3.3 DISCRETE STRUCTURES 

Structures such as trusses and frames, which have many identifiable members, 
connected only at their end points or nodes are called discrete structures. Each 
member of the structure is considered as a one-dimensional (I-D) element along 
its length, identified by its end point coordinates. Their lateral dimensions are 
reflected in element properties like area of cross section in trusses and moment 
of inertia and depth of section in beams. 

3.4 CONTINUUM STRUCTURES 

Structures such as plates, thin shells, thick shells, solids, which do not have 
distinctly identifiable members, can be modeled by an arbitrary number of 
elements of different shapes viz., triangles and quadrilaterals in 2-D structures 
and tetrahedron and brick elements in 3-D structures. These are called 
continuum structures. In these structures, adjacent elements have a common 
boundary surface (or line, if stress variation across thickness is neglected as in 
the case of plates). The finite element model represents true situation only when 
displacements and their significant derivates of adjacent elements are same 
along their common boundary. 
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3.5 MATERIAL PROPERTIES 

FEM is ideally suited for analysing structures with varying material properties. 
The variation of properties such as Modulus of elasticity (E), Modulus of 
rigidity (G) and coefficient of linear thermal expansion (a) may be: 

(a) constant (linear stress-strain relationship) or variable (non-linear stress
strain relationship) over the range of load. 

(b) same in all directions (isotropic) or vary in different directions 
(anisotropic or orthotropic). 

(c) constant over the temperature range or vary with temperature, 
particularly when the temperature range over the component is large. 

These variations may be inherent in the material or induced by the 
manufacturing processes like rolling, casting. Treatment of non-homogeneous 
material, with varying properties at different locations of a component, is 
difficult and is also very unusual. In most cases, variation of material properties 
with the direction and with temperature may not be significant and hence 
neglected. So, an isotropic, homogeneous material with constant (temperature
independent) properties is most often used in the analysis of a component. 

3.6 LINEAR ANALYSIS 

It is based on linear stress-strain relationship (Hooke'S law) and is usually 
permitted when stress at any point in the component is below the elastic limit or 
yield stress. In this analysis, linear superposition of results obtained for 
individual loads on a component is valid in order to obtain stresses due to any 
combination of these loads acting simultaneously. In some designs, it is 
necessary to check for many combinations of loads such as pressure and thermal 
at different times of a start-up transient of a steam turbine. In such a case, 
analysing for unit pressure; multiplying the stress results with the pressure 
corresponding to that particular time of the transient and adding to the stresses 
due to temperature distribution will be economical. 

3.7 NON-LINEAR ANALYSIS 

In many cases, the mathematical formulations are based on small deflection 
theory. A component with large deflections due to loads, such as aircraft wing, 
comes under the category of 'geometric non-linearity': In some aerospace 
applications, where the component is designed for single use, stress level above 
yield point, where stress-strain relationship is non-linear, may be permitted. In 
some other cases involving non-metallic components, material may exhibit non
linear stress-strain behaviour in the operating load range. These two cases come 
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under the category of 'material non-linearity'. In both these cases, analysis 
carried out by applying the load in small steps. 

(a) Geometric non-linearity : In these problems, geometry of the 
component is redefined after every load step by adding the 
displacements at various nodes to the nodal coordinates for defining the 
true geometry to be used for the next load step. 

(b) Material non-linearity : In these problems, total load on the 
component is applied in small steps and non-linear stress-strain 
relationship in the material, usually represented by the value of Young's 
modulii or Modulii of elasticity (normal stress/normal strain) Ex, Ey 
and Ez in different directions, is considered as linear in each load step. 
These values are suitably modified after each load step, till the entire 
load range is covered. Here, normal stress and normal strain can be 
tensile (+ve) or compressive (-ve) and E has the same units as stress, 
since strain is non-dimensional. 

0"3 ------------

E 4 

FIG U R E 3.1 Stress-strain diagram of a non-linear material 

3.6 STIFFNESS AND FLEXIBILITY 

Loads and displacements in an element are related through stiffness and 
flexibility coefficients. Stiffness coefficient (K) is the force required to produce 
unit displacement, while Flexibility coefficient (F) is the displacement produced 
by a unit force. They are usually defined for 1-0 elements such as truss 
elements or spring elements by 

P=K.u 

or u F.P 

where, K = AE is the stiffness coefficient 
L 

where, F = ~ is the flexibility coefficient 
AE 
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Since a = : = E E = E ( ~) where, u IS the change in length and, 

(AEJ therefore, P = L .u 

However, a more general definition of stiffness coefficient k'J is the force 
required at node 'i' to produce unit displacement at node 'j'. i.e., P, = klJ uJ" 

An important feature of the stiffness coefficient is that it has different units 
with reference to different loads and different displacements. For example, 

units of k'J relating load at 'i' to displacement at 'j' in a truss element are in 

'N/mm' whereas units of k'J relating moment at 'i' to slope at 'j' in a beam 
element are in 'N mm'. 

Stiffness coefficients k'J connecting loads at 'n' number of nodes with 

displacements at these 'n' number of nodes thus form a square matrix of order 

n x n, represented by [K]. In structures having linear force-deflection 

relationship, the flexibility and stiffness coefficients have the property k'J = kJ' 

and f,J = ~,. This is called Maxwell's reciprocity relationship. This makes the 
flexibility and stiffness matrices symmetric. 

3.9 PRINCIPLE OF MINIMUM POTElIolTIAL ENERGY 

Every component subjected to external applied loads reaches stable equilibrium, 
when its potential energy or the difference between work done by external 

forces and internal strain energy due to stresses developed is zero. It can also be 

expressed as - During any arbitrary kinematically consistent virtual 

displacement from the equilibrium state, satisfying constraints prescribed for the 
body, potential energy equals tozero or the work done by the external forces 

equals the increment in strain energy 

i.e., 

3.10 STRESS AND STRAIN AT A POINT 

Stress is the internal reaction in a component subjected to external forces. Thus, 

stress exists only when external force is applied on a component and varies 

from point to point. Stress at any point in a component is defined as a tensor 

with three components on each of the six faces of an infinitesimal cube around 

that point, as shown in the Figure 3.2. 

65 
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Y 

" " " 

Z az 

LyZ I 

/:L=~~----
,,"'ay 

" + Y face 

LXY ax 
---------- --.X 
+ X face 

FIGURE 3.2 Stress at a point 

Stress components are identified by two subscripts, the first subscript 
representing the direction of outward normal of the plane or face of the cube 
and the second subscript representing the direction of stress on that plane. Thus 
O'xx (or O'x) represents normal stress on the plane whose outward normal is 
along +ve X-axis (identified as + X face) while O'xy (or'tXy) and O'xz (or 'txz) 
represent shear stresses along Y and Z directions on the same plane. Stresses are 
similarly defined on the other five faces of the cube. 

For the equilibrium of this small element along X, Y and Z directions, it is 
seen that O'xx, O'xy and O'xz on the +X face are equal to O'xx, O'xy and O'xz on the-X 
face. Similarly on the Y and Z faces. So, out of the 18 stress components on the 
6 faces of the cube, only the following 9 stress components are considered 
independent. Thes~ are represented as 

'tyz 

Also, for the equilibrium of the element for moment!> about X, Y and Z 
directions, 'txy = 'tyx, 'txi = 'tzx and 'tyz = 'tzy being the complementary shear 
stresses on two perpendicular faces. Thus, only three normal stress components 
O'x, O'y, O'z and three shear stress components 'txy, 'tyz and 'tzx are identified at each 
point in a component. In the following chapters, these components are written 
as a stress vector {E} for convenience of matrix operations. 

Normal stress on any plane whose normal is N (with components Nx, Ny and 
Nz along cartesian x, y and z directions) can be obtained from the stress 
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components available in cartesian coordinate system by the following 
relationship. 

where, 

an = T x Nx + T y Ny + Tz Nz 

Tx = ax Nx + 'tXy Ny + 'txz Nz 

T y = 'tXy Nx + ay Ny + 'tyZ Nz 

Tz = 'txz Nx + 'tyZ Ny + az Nz 

In a similar way, strain at a point is defined as a tensor of 18 components, 
out of which six components consisting of normal strains Ex, Ey and Ez and shear 
strains "(xy, "(yz and "(ZX are considered independent. Normal strain along a 
direction is defined as the change in length per unit length along that direction 

while shear strain is defined as the change in the included angle as shown in 
Fig. 3.3. In the following chapters, these components are written as a strain 
vector {E} for convenience of matrix operations. 

In the case of 2-D and 3-D elements, general relations between 
displacements and strains and between strains and stresses, as obtained in the 
theory of elasticity, are used for calculating element stiffness matrices. These 
relations are given later with the following notation. 

Notation: u, v, ware the displacements along x, y and z directions 

Ex, Ey, Ez are the normal strains 

"(xy, "(yz, "(ZX are the shear strains 

ax,O"y, o"z are the normal stresses 

'txy, 'tyz, tzx are the shear stresses 

y 

T 
dy 

1 
Ov 

ox 

1+4--- dx ---".1 

FIGURE 3.3 Shear strain at a point 

x 
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3.11 PRINCIPAL STRESSES 

Depending on the type of structure and the load applied, three normal stresses 
and three shear stresses can exist at any point in the structure. These stress 
components are calculated with reference to the coordinate system used. 
However, there exists a plane along which shear stress is zero and the 
corresponding normal stresses (maximum and minimum) are called principal 
normal stresses or principal stresses. Along some direction, inclined to the two 
principal stresses, there exists maximum or principal 'shear stress. These are of 
interest to any designer as the component has to be designed to limit these 
stresses to the allowable limits of the material. They can be calculated, for a 
two-dimensional stress state, from 

{ax +aJ + ~{ax -ayf +4,2 
2 2 

(al-()2) ~(()x -()yY +4.2 . - - ~----'------
max- 2 - 2 

From uni-axial tensile test, where ax = 0 and, = 0, 

we get and 
a y 

'max =2 = 0.5 a max 

3.12 MOHR'S CIRCLE FOR REPRESENTATION OF 2-D STRESSES 

The principal stresses can also be obtained by graphical method using Mohr's 
circle. Here, normal stresses are represented on X-axis and shear stresses on 
Y -axis. Principal or maximum normal stress is inclined to the given stress state 
by an angle e, while maximum shear stress is the maximum ordinate of the 
circle and exists on a plane inclined at (45 - at from the given stress state or at 
45° from the Principal stresses. 

Procedure: Plot OA and OB to represent stresses ax and ay along X-axis. 
Plot AC and BD, to represent shear stress 'xy, parallel to Y-axis. With CD as 
diameter, construct a circle intersecting X-axis at F and G. Then OF and OG 
indicate maximum and minimum principal stresses, inclined at an angle e (half 
of angle between EC and EA) with line CD representing the given stress state. 
Length EH, radius of the circle, indicates maximum shear stress. 
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It can be observed that sum of normal stresses on any plane is constant and is 
called I st stress invariant I J 

i.e., 

Shear 
stress, '( 

o 

H 

..--cry--~I 

for 2-D stress case 

F 

Nonnal 
stress, cr 

FIGURE 3.4 Mohr's circle for 2-D stress representation 

Two special cases of Mohr's circle are of special importance: 

(a) For uni-axial tensile test, from which material properties are usually 
evaluated, the load is applied along one axis (usually Y-axis) and other 
components of stress are all zero. Then, 

a 
0"\ = O"y; 0"2 = 0 and 'tmax =_Y as can be seen from the Figure 3.5. 

2 

Shear 
stress, T 

---+--------L-------+----t> Nonnal 
stress, cr 

FIGURE 3.5 Mohr's circle for uni-axial tensile test 
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(b) In the earlier cases, it is seen that normal stress corresponding to 
maximum shear stress is not zero. If the normal stress, associated with 
maximum shear stress, is zero, then it is called pure shear state. It is 
possible when a component is subjected to torsion only. In this case of 
pure shear, on a plane inclined at 45° to the plane of maximum shear 
stress, radius of the circle is 

01 = --<J2 = 'tmax as can be seen from Fig. 3.6. 

Shear stress, 1: 

i 
t max 

---+--------t-------+-""--+Nonnal 
stress, cr 

FIGURE 3.6 Mohr's circle for pure shear 

This can also be understood by considel ing stresses actitlg at a point, 

identified by a small cube around it, when the component is subjected to 

torsion. Torsion is represented by a couple formed by two equal and opposite 

shear forces acting on opposite faces of the cube, as shown in Fig. 3.7 (a). 

An equal and opposite couple is automatically formed, if the component is 'in 

static equilibrium, as shown in Fig. 3.7 (b). The shear forces resulting from this 

couple are called complementary shear forces (stresses). If two different free 

bodies of half this cube about its diagonals are considered, resultant of the two 

shear forces on adjacent surfaces will result in tensile stress on one diagonal 

(BD) and a compressive stress on the other diagonal (AC), as shown in 
Fig. 3.7 (c). 
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D CD+---- CD+---- C 

iCJi iOi Ai ~i 
1\ B A ----+ B A ----+ II 

(a) (b) (c) 

FIGURE 3.7 Representation of shear, complementary shear and principal 
normal stresses 

If'q' is the shear stress on the face of the cube and's' is the side ofthe cube, then 

Resultant force on the diagonal, R = 2.q.S2.COS 9. 

R 2.q.s2.cos B 
a--- -q 

- A - 2.s2.cos () -
Stress on this diagonal, 

Thus, both these stresses (maximum or principal nonnal stresses) are equal 

in magnitude to the shear stress on the surfaces and are inclined at 4510 to the 

shear stresses, as already seen in the corresponding Mohr's circle. 

Maximllm shear ... tress theory, the most conservative and commonly used 

theory of failure, suggests that a component fails when the maximum shear 

stress at any point in a component exceeds the allowable maximum shear stress 
value of the material. 

3.1.3 VONMISES STRESS 

VonMises stress or equivalent stress is related to the three principal stresses at 

any point. It is used in Maximum distortion energy theory (which states that a 

component fails only due to distortion in shape and is independent of 

volumetric expansion or contraction). Equivalent stress is given by 

_ [(a\ -(2)2 +(a2 -(3)2 +(a3 -al)2l < 
a eq - 2 - a y 

It is also represented in lenns of I st and 2nd stress invariants (I I and h) as 

aeq =~If -312 
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In 2-D plane stress case, Oz = 0 and 03 = 0 

II = Ox + Oy = 01 + 02 

12 =O'xO'y -'t;y =0'10'2 

In 2-D plane strain case, Oz = v (ax + Oy) 

II = ax + Oy + Oz = 01 + 02 + 03 

and 

Comparing distortion energy of specimen in un i-axial tensile test, 

where 01 = Oy ; 02 = 03 = 0, 

with pure shear state where 'tmax = 01 = 02 , 

we get, 0" y 0 577 
"max ::; .J3 =. O"y 

This stress value is used in the distortion energy theory of failure and is 
very popular. 

3.14 THEORY OF ELASTICITY 

The definitions of stress, strain and the relationships between displacement, 
strain and stress are explained in Strength of materials with special reference to 
I-D structures. Before analysing continuum structures, a more general 
understanding of these concepts is essential. In the following, a brief discussion 
of these concepts is presented. Reader is advised to go through any book on 
theory of elasticity for a more detailed presentation of these concepts. 

(a) Poisson's ratio 

Normal strain (tensile or compressive) due to an applied load along the 
direction of load is called longitudinal strain. In most engineering 
materials, increase of size in one direction is associated with reduction of 
size in the other two directions, to minimise change in the volume of the 
component. Thus tensile longitudinal strain is associated with 
compressive lateral strains and vice versa. Ratio of lateral strain to 
longitudinal strain is found to be a constant for each material and is called 
Poisson's ratio (usually represented by v or 11m). With the usual notation 
of tensile strains as +ve and compressive strains as -ve, this ratio is 
always negative. However, this ratio is given a positive value and the 
negative effect is taken care of in the corresponding equations. Its value 
ranges theoretically from 0 to 1, while it varies from 1/3 to 114 for most 
of the engineering materials. v = Y2 indicates a perfectly plastic material. 

Poisson's ratio, v = Lateral strain I Longitudinal strain 
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(b) Rigidity modulus, Bulk modulus 

Shear modulus or Rigidity modulus, G = shear stress / shear strain 

and Bulk modulus, K = Nonnal stress / Volumetric strain 

where, 

I 
. . ov 

vo umetnc stram = - ::::: Ex + Ey + Ez 
V 

(neglectinp higher order small terms) 
(ax -yay -vaJ ~ay -vaz -vax) (a z -vox -yay) 

=----=----+ + -----
E E E 

=(a
x 
+ay +aJ (I-:V) 

when same load is acting along x, y and z directions 

= a x (1- 2 v) when load is acting along x direction only 
E 

Rigidity modulus and bulk modulus also have the same units as stress 
(N/m2 or Pa) 

Bulk modulus has very limited applications in structural analysis. For 
any given material, modulus of elasticity and modulus of rigidity reduce 
at higher temperatures. 

These material constants (modulii) are mutually related by the 
following expression 

E=2G(1 +v)=3K(I-2v) 

(c) Strain-Displacement Relations 

Strains can also be expressed as functions of displacement components ar 
a point in the three Cartesian coordinate directions. If u, v and w (all 
functions oflocation of point, represented by its X, Y, Z coordinates) imd 
represent the displacement components along X, Y and Z directions, then 

au 
E =Xax 

au Ov 
Yxy = iJy + ax 

(d) Thermal stress 

Ov 
E =-yiJy 

Ov Ow 
Yyz= Oz + iJy 

Ow 
E =-

z Oz 

.•••• (3.1) 

Thermal strains do not induce any stresses unless thermal expansion 
is constrained. 
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For example stress in a uniform bar subjected to temperature rise by 
~T, is dependent on the end condition as shown below. Let a be the 
coefficient of linear thermal expansion. Total elongation of a bar of 
length L due to increase in its temperature by ~T is L oc ~T. Then, stress 
in the bar depends on the constraint (boundary condition) for its 
expansion, as shown Fig. 3.8. In each case, 

stress a = E.E = (~) x Restrained part of expansion. 

Case (a): Unconstrained 

Stress, 0=0 

~L -+I a I 
Case (b) : Partially 

constrained 

(a < L.a.AT) 

o E(L.a.AT-a) 
L 

FIGURE 3.8 

Case ( c) : Fully 
constrained 

o=E.a.AT 

(e) Stress-strain Relations or Constitutive equations (from generalised 
Hooke's law) 

• For linearly elastic and isotropic material 

E = (ax -vay -vaJ. 
x E ' 

E = (-vax +ay -vaz ). 

y E ' 

(-vax -yay +az ) 
E = . 

z E ' 

tyz 
'Y =

yz G 

t 
'Yzx = ;; 

where G = (E ) is the shear modulus or rigidity modulus 
21+v 

Sum of the three equations gives, 

( {ax +ay +az ) 
Ex +Ey +Ez = 1-2V\ E 

..... (3.2) 

These equations can also be written in terms of stresses as functions of 
strains. 
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E[(I-v}Ex +VEy +VEz ] 
O=--'--,..-:..---=r-;------'-__ ~ 

x (1 +v)(1-2v) 

E[wx +(l-v}Ey +VEz ] 
O=---=;--~,..-:..~;----=-

y (1 +v)(I-2v) 

Eyxy 
't

xy = 2(1 + v} 

E yyz 
't =--;-~, 

yz 2(1 + v} 

E[v[x +VEy +(l-v}Ez ] 
o =--~--~--~---

z (1 + v)(1 - 2v) 

E 
't = ( ) 'V ••••• (3.3) ZX 21+v'ZX 

These equations are expressed more conveniently in matrix notation as 

{o} = [D] {E} 

In general, {o} = [D] ({e} - {eo}) 

••••• (3.4) 

••••• (3.5) 

where, {Eo} = [nAT, nAT, nAT, 0, 0, of is the initial or stress-free 
strain vector 

and AT is the change in temperature of the component 

since thermal expansion produces only normal strain (with no shear 
strain and no Poisson's effect) and thermal strains do not induce any 
stresses unless thermal expansion is constrained 

The 3-D stress-strain relations are simplified below for l-D and 2-D cases. 

1-D Case: ,t 

x 
P .. 4--------_,"",f .... M_--+~ P 

FIGURE~ 

(}'=Ee ••••• (3.6) 
2-D cases: 

(i) Plane stress case, represent) by a thin plate in X-V plane, plane 
subjected to in-plane loads ~ng X-and/or V-direction, and no load 
(and, hence, no stress) along., normal to the plane (in Z-direction). 

(a) Subjected to no load~, hence, no stress) along 

i.e., «(}'z = 0, Ez :;t:'0) ••••• (3.7) 

[

1 v 

[D]=~ v 1 
\1-v } o 0 (I~V) 1 ••••• (3.8) 

..... (3.9) 
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Py 

y 

on this surface 

FIGURE 3.10 

(ii) Plane strain case, represented by a thin plate in X-Y plane, which is 
constrained along the normal to the plane in Z-direction (i.e., no strain 
along the normal). It is an subjected to in-plane loads along X-and/or 
V-directions, and no load (and, hence, no stress) along the normal to the 
which is constrained along the normal to the plane, has no strain along 
the normal. It is an approximation of a 3-dimensional solid of vary large 
dimension along Z compared to its dimensions along X and Y and 
loaded in X-Y plane. Example: A hydro dam between two hills, which 
can be considered as a set of slices or plates in the flow direction (X). 
Each slice in X-Y plane is modeled by plane strain elements. 

Here, (O"z -::;:. 0, Ez = 0) •.... (3.10) 

[0] = ( ) ( ) [1 ~ v 1 ~ v ~ I 
1 + v 1 - 2v 0 0 (1-22V) 

••••• (3.11) 

and {EO} = (1 + v) [ai\T ai\T oy ••••• (3.12) 

(-vO"x -vO" +o"z) 
This is obtained by using E z = y = 0 to represent O"z 

E 
in terms of o"x and O"y as O"z = v( O"x - O"y) and substituting for o"z in the 
relations for Ex and Ey• 
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FIGURE 3.11 

Another example of plane strain is a segment of an axi-symmetric solid 
which is self constrained in the circumferential or hoop direction. 

• Orthotropic materials 

3-D case 

Eq. 3.2 is modified to account for variation of E and v along material axis 
(1,2,3) as 

- v 21 -V3\ 
0 0 0 

E\ E2 E3 

- v 12 1 - V32 0 0 0 1>, 
E1 E2 E3 

0", 

1>2 - V13 - V 23 1 
0 0 0 

0"2 

1>3 E1 E2 E3 0"3 
••••• (3.13) 

1'2 0 0 0 0 0 
't12 

123 
G 12 't23 

131 0 0 0 0 0 't3, 
G 23 

0 0 0 0 0 
G 31 

where, E\ V2\ = E2 V12 E2 V32 = E3 V23 and E3 VI3 = E1 V31 
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2-D Plane stress case 

Eq. (3.8) is modified to account for variation of E and v along material 
axes (1-2) as 

[ 

E\ v2\E\ 

[0]= ( 1 ) v12E2 E2 
1-v\2v2\ o 0 

..... (3.14) 

where, V12E2 = V2\ E\ 

When an orthotropic plate is loaded parallel to its material axes, it 
results only in normal strains. If the material axe~ (1, 2) are oriented at an 
angle S w.r.t. global (x,y) axes, then 

[0] = [T]T[O] [T] ...•. (3.15) 

where 

[T]=f :~::: :~::: 
2 sinS cosS - 2 sinS cosS 

(f) Compatibility equations 

2sinScosS 1 
-2sinScosS 

cos2s - sin 2S 

..... (3.16) 

While in 1-0 elements, only one stress component and one strain 
component are used in the strain energy calculation, stresses and strains 
in 2-D and 3-D elements have more components due to the effect of 
Poisson's ratio even for a simple loading. While six strain components 
can be obtained from the three displacement components by partial 
differentiation, the reverse requirement of calculating three displacement 
components is possible only when the six strain components are inter
related through the following three additional conditions, called 
compatibility equations. 

a2
Ex a2

Ey _ a2y xy 
--+-----ay2 ax2 axay . 
a2 2 a2 

Ey a E YyZ __ + __ z= __ 

&2 ay2 ay& 

.•... (3.17) 
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(g) Equilibrium equations 

Stress at a point in a component is described by the stress tensor - one 

normal stress component and two shear stress components on each of the 

six faces of a cube around that point. For equilibrium of this cube, these 

eighteen stress components should satisfy the following equilibrium 

conditions, where Fx, Fy and Fz are the forces acting on the cube along X, 

Y, and Z axes. 

aCJ x + a't xy _ mxz _ F . 
ax ay---;:;;:- x' 't xy = 'tyx 

•.••• (3.18) 

A Jew problems are included here, based on the equations presented above. 

Example 3.1 

If a displacement field is described by u = -5x2 - 6xy + 3y2; V = 4x2 + 9xy + 41 
determine E", Ey and 'Yxy at point x = 1 and y = -1 

Solution 

Example 3.2 

au 
Ex = ax =-10x-6y+O=-10 x 1-(-6)(-1)=-4 

av 
E = - = 0 + 9x + 8y = 9 x 1 + 8(-1) = + I Yay 

au av 
'Y = - + - = (0 - 6x + 6y) + (8x + 9y + 0) = 2x + 15y 

xy ay ax 

=2 xl + 15 (-1)=-13 

If a displacement field is described by u = - 4x2 - 12xy + 31; 

v = - 3x2 + 4xy + 21 determine Ex, Ey and 'Yxy at point x = 1 and y = -1 
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Solution 

au 
Ex = ax =-8x-12y+O=-8 x 1-12 x (-1)=+4 

av 
Ey=ay =O+4x+4y=4 x 1+4x(-1)=O 

au av 
Yxy = ay + ax =(O-12x+6y)+(6x+4y+O) 

= - 6x + lOy = -6 x I + I 0(-1) = - 16 

Example 3.3 

If a displacement field is described by u = 4x2 - 4xy + 6l; v = _2X2 - 8xy + 3l 
determine Ex> Ey and Yxy at point x = -1 and y =-1 

Solution 

au 
Ex = ax =8x-4y+O=8(-1)-4(-1)=-4 

av 
Ey= ay =O-8x+6y=-8 x (-1)+6 x (-1)=+2 

au av 
Yxy = ay + ax =(O-4x+ 12y)+(4x-8y+O)=4y=4(-1)=-4 

Example 3.4 

If a displacement field is described by u = 3x2 
- 2xy + 6y2; V = 4x2 + 6xy - 8y2 

determine Ex, Ey and Yxy at point x = -1 al1d y = 1 

Solution 

au 
Ex = ax =6x-2y+O=6(-1)-2 xl =-8 

av 
Ey=ay =O+6x-16y=6(-1)-16 x 1=-22 

au av 
Yxy = ay + ax =(O-2x+ 12y)+(8x+6y-O)=6x+ 18y 

=6(-1)+18 xl = 12 
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Example 3.5 

Ifu = 2X2+ 3y, v = 3y + l find the normal and shear strains 

Solution 

Normal strains are 

au 
E = - = 4x + 0 = 4x Xax 

Shear strain is 

au av y xy = ay + ax = (0 + 3) + (0 + 0) = 3 

Example 3.6 

A long rod is subjected to loading and a temperature in.crease of 30°C. The total 

strain at a point is measured to be 1.2 x 10-5
• IfE = 200 GPa and 

Q. = 12 x 10-61 DC, determine the stress at the point. 

Solution 

a = E (ETotal - ETbermal) = E (ETotal - a .A T) 

= 200 X 109 (1.2 x 10-5 -12 X 10-6 x 30) = 200 x 109 
(- 34.8 x 10-5

) 

= - 69.6 x 106 N/m2 or - 69.6 N/mm2 

Example 3.7 

Consider the rod shown in Fig. 3.12 'Yhere the strain at any point x is given by 

Ex= 1 + 2x2. Find the tip displacement o. 

i:;.r--------'~ 
11+4---- L ~I 

FIGURE 3.12 
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Solution 

L 

0L = fExdx = f{1 + 2X2 ~X 
o 

Example 3.8 

In a plane strain problem, if o"x = 150 N/mm2, O"y = -100 N/mm2, 
E = 200 KN/mm2 and v = OJ, determine the value of stress o"z 

Solution 

(-vO" -VO" +0" ) 
In a plane strain problem, strain Ez = x y z = 0 

E 

Therefore, o"z = VO"" + v O"y = OJ x 150 + OJ x (- 100) = 15 N/mm2 

Note that the value ofE is not required, but given only to mislead students. 

3.1.5 SUMMARY 

• Based on the relative dimensions, a component may be idealised by 
1-0, 2-D or 3-D elements. At every point in a component, stress and 
strain are expressed by a normal component and two shear 
components on each of the six faces of a small cube around that point. 
Out of 18 such vector components, from equilibrium considerations, 
only three normal components and three shear components in any 
orthogonal coordinate system, are independent and are represented by 
a column matrix of order (n x 1). Combined effect of these various 
components will be different on planes, inclined to the coordinate 
axes. Principal stresses are the maximum values on any such plane. 
These values are significant while designing ~ component and can be 
also obtained by graphical method, called Mohr's circle. 

• The flexibility of movement of any point in the component is 
identified by degrees of freedom (OaF). With reference to the 
orthogonal coordinate system, the every point in a component can 
have 1-6 OaFs, covering 3 translations along the three axes and 
3 rotations about the three axes. 
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• Components, which can be modeled by a combination of 
1-0 elements, are also called discrete structures. These include truss 
element for axial loads (I OOF/node, along its axis), beam element 
for bending loads (2 OOFs/node in each of its two planes of bending, 
deflection and slope normal to axis) and torsion element for torque 
load (I OOF/node, rotation about its axis). These four modes of 
deformation are mutually independent and are called uncoupled OOF. 
A generalised beam element has 6 OOFs/node and is subjected to all 
these loads. 

• Different elements of a discrete structure are joined at their end points 
only and hence only modulus of elasticity of the material is relevant 
(Poisson's ratio is not relevant in their analysis). Normal stress and 
normal strain are related by modulus of elasticity (E) while shear 
stress and shear strain are related by modulus of rigidity (G). 

• Components, which are modeled by 2-D or 3-D elements, are called 
continuum structures. These elements have surface contact along the 
common boundary and hence Poisson's ratio is also relevant. 
Isotropic and homogeneous material is commonly used, within its 
linear elastic range. Stress strain relationship is a matrix of order 3 x 3 
for 2-D elements and 6 x 6 for 3-D elements. 2-D elements m~y be 
used in plane stress condition or plane strain condition, depending on 
the particular component. 

• 2-D and 3-D elements may be used with translational OOFs only (2-D 
plane stress, 2-D plane strain or 3-D thick solid) or along with 
rotational degrees of freedom (2-D plate bending, 2-D thin shell and 
3-D thick shell) depending on the nature of applied loads. 
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CHAPTER 4 

DISCRETE (I-D) 
ELEMENTS 

A discrete structure is assembled from a number of 'easily identifiable 1-0 
elements like spars, beams. Nodes are chosen at the junctions of two or more 
discrete members, at junctions of two different materials, at points of change of 
cross section or at points of load application. In the 1-0 element, axial 
dimension is very large compared to the cross section and load is assumed to act 
uniformly over the entire cross-section. So, the displacement is taken as a 
function of x, along the axis of the member. Stress and strain are also uniform 
over the entire cross section. The solution obtained in most of these cases, is 
exact. 

4.1. DEGREES OF FREEDOM OF DIFFERENT ELEMENTS 

Based on the relative dimensions of the element, the individual elements can be 
broadly classified as 1-0, 2-0 and 3-0 elements. The load-displacement 
relationships of these elements depend on the nature of loads (axial/in-plane 
loads, torsion or bending loads) and are calculated using variational principle. 
Some such elements and their degrees of freedom at each node in element 
(or local) coordinate system are given below. 

AxiallIn-plane loads Bending (Normal loads and/or moments) 

1-0 Spar or Truss (I OOF /node) Beam (2 OOF /node for bending in I-plane) 

2-0 Plane stress/Plane strain/ Plate bending (3 OOF/node) 

Axisymmetric (2 OOF/node) Thin shell (6 OOF/node) 

3-0 Solid (3 DOF/node) Thick shell (6 OOF/node) 
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4.2 CALCULATION OF STIFFNESS MATRIX BY DIRECT METHOD 

1-0 elements are broadly classified based on the load applied on them as spar or 
truss element for axial load, torsion element for torque load and beam element 
for bending in one or two planes through neutral axis/plane. Stiffiless matrix of 
each of these elements can be derived based on the well known relations in 
strength of materials. 

(a) Truss element 

or 

E,A,L 

0' = PIA = E E = E u I L 

P= (A ElL) u =Ku 

2 P, U 

.•••• (4.1) 

is the familiar relation for axial load carrying element fixed at one end 
and load applied at the free end with displacement 'u' at the free 
end 2. 
In general, if loads PI and P2 are applied at the two ends of an element 

resulting in displacements UI and U2 at these two ends, stress is 
proportional to (U2 - UI) 

Then, -PI =P2 =( :E)(u2 -ul ) ••••• (4.2) 

In matrix notation, {:J = [K ~ :J 
where ..... (4.3) 

(b) Torsion element 

~1--------2 ~~ 
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From strength of materials, T = G8 
J L 

or T = ( ~ ) 8 = K 8 

is the familiar relation for torsion load carrying element fixed at one end 

and torque applied at the free end with rotation '8' at the free end 2. 

For a general element on which torque loads TI and T2 are applied at 

the two ends and corresponding rotations are 8 1 and 82, torque is 

proportional to (82 - 8,). 

Then, 

In matrix notation, {~:}=[K]{::} 

where, ••••• (4.4) 

(c) Beam element 

6EI 

131 

From simple beam theory, forces and moments required at the two ends 

ofa beam in X-Yplane to give, 

(i) VI = 1 and V2 = 8 1 = 82 = 0 and 
(ii) 8 1 = 1 and VI = V2 = 82 = 0 are given in the figures with upward 

forces, counterclockwise moments, and corresponding 
displacements and rotations as +ve. 

12E1 

IT 
12EI 

IT 2 ~ 6EI 
------------------------ }!j! 

L 
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Similar values can be obtained for the conditions 

(i) V2 = 1 and VI = 91 = 92 = 0 and 

(ii) 92 = 1 and VI = V2 = 91 = 0 

Arranging these values in matrix form, 

PI VI 

MI =[K] 
91 

P2 v2 
M2 92 

12 6L -12 6L 

where, [K]= EL~ 6L 4L2 -6L 2L2 
-12 -6L 12 -6L 

6L 2L2 -6L 4e 

4.3 CALCULATION OF STIFFNESS MATRIX BY 

VARIATIONAL PRINCIPLE 

Stiffuess matrix of each element is calculated, using the principle of minimum 
potential energy which states that "Every component, subjected to some 
external loads, reaches a stable equilibrium condition when its potential energy 
is minimum". So, the problem lies in identifYing the set of displacements at 
various points in the component which ensures that the potential energy of the 
component is minimum. 

This is analogous to the problem in variational calculus of finding a 
stationary value y(x) such that the functional (function of functions) 

X2 (~ d) 
1= J Fr,y, d~ dx 

Xl 

...•. (4.6) 

is rendered stationary. Integral I is stationary when its first variation vanishes 

I.e." 01=0 ..... (4.7) 

There are many different approaches such as Euler-Lagrange method, for 
solving such problems. Interested readers are advised to refer to the relevant 
books in mathematics for a more detailed presentation of the variational 
calculus. 
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In Rayleigh-Ritz method, which is used in FEM, a mathematical expression 

in the form of a power series in x is assumed for the unknown function y(x). 

Then, eq. (4.7) becomes 

~=O 
8a j 

fori=O,I, ... n ..... (4.8) 

where ao, al>" .an are the coefficients ofthe assumed power series. 

Finite element method is based on the variational principle where the 
functional I is the potential energy of the system with nodal displacements as 

the independent variables y(x) and strains as the functions dy of the 
dx 

independent vari~bles. This method leads to an approximate solution. Potential 
energy is an extensive property i.e. the energy of the entire component is the 
sum of the energy of its individual sub regions (or elements). Hence eq.(4.7) can 
be written as 

01 = ~ ole = 0 

Since the number and size of the elements are arbitrary, this relation is 
satisfied only when 

ole = 0 ••••• (4.9) 

In using this method, y(x) must be kinematically admissible i.e., y(x) must 
be selected so that it satisfies the displacement boundary conditions prescribed 
for the problem. Choice of a function for the entire component satisfYing this 
condition becomes difficult for complex problems. Finite element method 
overcomes this difficulty by relating the primary unknown function to the 
individual element, rather than to the total problem. Hence, geometry of the 
overall component and the system boundary conditions are of no concern when 
choosing the function. 

For the individual element, 

..... (4.10) 
v 

where, [Ke1 is the stiffness matrix of the element 

Since ~ue} represents the arbitrary nodal values of displacements, they can 
not be identically zero in a loaded component. 

..... (4.11) 
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In the displacement method, calculation of stiffness matrix for an element 
starts with an assumed displacement function over the element in each degree of 
freedom, usually in the form of a polynomial. By substituting nodal coordinate 
values in these polynomials, the unknown constants in the polynomial can be 

evaluated in terms of nodal displacements. This condition necessitates choosing 

displacement polynomial with as many coefficients as the number of nodal 
DOF for that element. This procedure is explained in more detail in the 
remaining sections of this chapter. 

Displacement function for the element 

The function shall be continuous over the entire element with no singularities 
and easily differentiable to obtain strains for calculation of potential energy. The 
polynomial should be symmetric in terms of the global coordinate axes, to 
ensure geometric isotropy. 

Strains in the element are obtained as derivatives of the displacement 
polynomial, and are thus expressed in terms of the nodal displacements. 
Stresses are expressed in terms of strains, using the appropriate stress-strain 
relationship, given earlier. By equating work done by the external forces to the 
change in internal strain energy of the element and applying variational 
principle, load-displacement relationships of the element in terms of stiffness 
coefficients are obtained. They represent a system of simultaneous equations in 
terms of nodal loads and nodal displacements. 

By using suitable transformation matrix, this stiffness matrix derived in local 

coordinate system of the element, is transformed to a global coordinate system 
which is common to all the elements. The stiffness matrices of all elements are 
then added together such that the stiffness coefficient at a common node is the 
sum of the stiffuess coefficients at that node of all the elements joining at that 
node. This assembled stiffness matrix is square, symmetric, singular and 

positive definite. This method is described in detailed here for a truss element. 

A truss element is subjected to axial load only and therefore has one degree 
of freedom (axial displacement) per node. Variation of axial displacement u(x) 
between the two end nodes is represented by a linear relationship in the form of 
a polynomial with two constants. 

Let u{x)=a J +a 2 x=[1 X~:J={f{X)}T {a} ..... (4.12) 
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Choosing node I as the origin of local coordinate system for this element 
with X-axis along the axis of the element and substituting the values of x for the 
two end points of the truss element, (x = 0 at node i and x = L at node j), nodal 
displacement vector {ue} or [u. UJ]T can be written as 

or {Ue} = [G) {a} and {a} = [Gr1 {ue} ..... (4.13) 

Solving for the coefficients {a} from eq. (4.13) and substituting in eq.( 4.12), 

u(x) = {f(x)T} [Gr1 {ue } 

~[I xtl ~J{:J 
=[1- ~ ~}uJ=[N]T {uJ ..... (4.14) 

Strain, {E}= du = {f'{x}? [G]-l {uJ=[B]{uJ ..... (4.15) 
dx 

where, [B]~ If' (xW [G]l ~ [0 I] [il rJ ~[-IIL ilL] ..... (4.16) 

and {BE} = [B) {Bue}; {BE}T = {Bue}T [Bf 

Stress, {cr} = [0] {E} = [0] [8] {ue}. 

Here [0] = E, since only one axial stress component is relevant for a 1-0 
truss element 

From eq. (4.10), 

{BuJT {pJ- J{OEeV {cr}dv=O 
v 

{Buel
T {Pel- J{BuJT [Bf [O][8]{uJdv=0 

v 

{Bu,Y [{P.l-PBY [O][B]dV {u,}] ~ 0 

{Bu e? {{Pe }- [KJ {uJ} = 0 



92 FINITE ELEMENT ANALYSIS 

Since {oue} cannot be zero, 

{P e} = [Ke] {ue} ..... (4.:17) 

where, [Kel= nBf [OHB]dv= JJftBf E[B]dxdydz 
v 

= AE nBf [B}dx 
v 

since, [B] is not a function ofy or z and Hdy dz = A 

I] _ AE [ I -1] - dx--
L L -1 1 

.. (4.:18) 

4.4 TRANSFORMATION MATRIX 

Stiffness matrix and load vector of any element are initially derived in the local 

coordinate system, with its x-axis along the element, and can vary from one 

element to another. A global coordinate system is common to all the elements. 

If different elements have different local coordinate systems, stiffiless 

coefficients relating nodal load vector and nodal displacement vector can not be 

combined together unless directions of load and displacements of different 

elements joining at a common node coincide i.e., sum of two vectors is equal to 
their algebraic sum only when the vectors are collinear. If the local coordinate 
system of an element is inclined to the global coordinate system at an angle e, 
then transformation of load vector, displacement vector and the stiffiless matrix 
are to be carried out before they are assembled with other elements. 

For a truss element, if Pi, Pj, Uj and Uj represent axial load and displacement 
values in the local or element coordinate system at nodes i and j and [Ke] is the 

2 x 2 stiffiless matrix of the element and (Px')j, (Py')j, Uj', vi', (Px')j' (Py')j' uj' 

and vj' are the components of axial load and displacement along global x and y 
axes at nodes i and j then [K' e], stiffiless matrix of the element in the global or 
structure coordinate system, is derived below. 

Pi = (P' x)j cos e + (P' y)j sin e 
PJ = (P' x)j cos e + (P' y)j sin e 

Uj = U'j cos e of v'i sin e 
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These relations can be expressed in matrix fonn as 

or 

y, v 

V' 
I 

~~------~~~--------------+X,u 
1+-- u; ----+I 

These can also be expressed as 

{p;} = [Te]T {Pel and {u~} =[Te]T {ue} 

..... (4.19) 

{Pel = [Kel {ue} in local coordinate system can now be written in global 
coordinate system as 

[Tel {Pe' J= [KeJ,[Tel {u e' } 

or {Pe'} = [Te r [Kel [Tel {u:} = [K~] {u~} 
we get 

cos29 cos9sin9 - cos29 - cos9sin9 

[Ke'J=:E 
cos9 sin9 sin 29 -cos9sin9 - sin 29 

..... (4.20) 
- cos2 9 - cos9sin9 cos29 cos9sin9 

- cos9sin9 - sin 29 cos9sin9 sin 29 
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where, L=~(X2 -xli +(Y2 _y\)2 

This can also be written in the fonn 

12 1m _/2 -1m 

[ Ke'J=~ 1m m2 -1m _m2 

_/2 -1m 12 1m 
..... (4.21) 

-1m _m2 1m m2 

Transformation of truss element stiffness matrix In 3-D space 
For a truss element arbitrarily oriented in 3-D space, a similar transfonnation 
matrix can also be derived and the stiffness matrix in 3-D space can be written 
using 

1=(x2-xJ. m=(Y2-Y\) and n=(Z2- Z\) 
L' L L 

where, L=~(X2 _X j )2 +(Y2 _y\)2 +(Z2 -z\Y 
in the fonn 

12 1m In _/2 -1m -In 

1m m2 mn -1m _m2 -mn 

[ Ke'J=A~ In mn n2 -In -mn _n2 

-p -1m -In 12 1m In 
..... (4.23) 

-1m _m2 -mn 1m m2 mn 

-In -mn _n2 In mn n2 

4.5 ASSEMBLING ELEMENT STIFFNESS MATRICES 

In a truss having three elements connecting nodes 1-2, 2-3 and 3-1, let the 
element stiffness matrices (each of 4 x 4) after transfonnation to global 

. coordinate system be: 
y 

3 

3 

~------~~---+x 
1 2 
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For element-l joining nodes 1 and 2, the local coordinate system coincides 
with global coordinate system (l = I, m = 0) and, so, displacement components 
v, and V2 are zero. 

(pJ, (k ll ), 0 (k13 ), 0 u, 

(Py), 0 0 0 0 VI 
Therefore, 

(Px )2 = (k31 )1 0 (k33 ), 0 u2 
(PY)2 0 0 0 0 v2 

For element-2 joining nodes 2 and 3, the member is inclined to the global 
axes. 

Therefore, 

(pJ2 (k ll )2 (k 12)2 (kl3 )2 (k14 )2 u2 
(PY)2 (k 2')2 (k 22)2 (k23 )2 (k24 )2 v2 
(px )3 = 

(k3')2 (k32 )2 (k33 )2 (k34 )2 u3 
(PY)3 (k 41 )2 (k42 )2 (k 43 )2 (k 44)2 V3 

For element-3 joining nodes I and 3, the local coordinate system is 
perpendicular to the global coordinate system (l = 0, m = I) and so displacement 
components UI and U3 are zero. 

o 0 

o (k 22 )3 
o 0 

o (k 42 )3 

o 0 

o (k 24 )3 
o 0 

o (k 44 )3 

Then, the process of assembling element stiffness matrices involves 
combining the nodal stiffness values of all the elements joining at every 
common node so that the order of the assembled stiffness matrix equals the total 
number of degrees of freedom of the structure. 

or 

o 
(k 22 )3 

o 
o 
o 

(k 24 )3 

(k13 ), 

o 
(k33 ), + (k ll )2 

(k 21 )2 
(k31 )2 
(k4,)2 

{P} =[K] {u} 

o 
o 

(k12 )2 
(k 22 )2 
(k32 )2 
(k42 )2 

o 
o 

(k13 )2 

(k 23 )2 
(k33 )2 
(k 43 )2 

o 
(k 24 )3 
(k'4)2 
(k24 )2 
(k34 )2 

(k 44 )2 + (k44 )3 
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which represents a set of n simultaneous equations, where n is the total number 
of degrees of freedom in the structure. In the case of mechanical structures, the 
assembled stiffness matrix is symmetric, singular and positive definite. 

4.6 BOUNDARY CONDITIONS 

The singularity of the matrix indicates possibility of rigid body movement of 

the structure in different directions and hence the possibility of many solutions 

for the unknown nodal displacements. Boundary conditions, in terms of fixed 

degrees of freedom or known values of displacem,ents at some points of the 

structure, are therefore applied. In some structures, where no part of the 

structure is fixed, it is possible to apply different boundary conditions. Each 

solution gives displacements at other points in the structure, with reference to 

the chosen fixed points. 

(a) Elimination method 

The columns and rows of the stiffness matrix, displacement vector and load 

vector are rearranged so that the set of equations can be written as 

..... (4.24) 

where q, is the set of unknown displacements and q2 is the set of specified 

displacements. 

From static equilibrium considerations, terms in the load vector {P2} 

corresponding to the fixed or specified values of degrees of freedom {q2} 

represent reactions at those degrees of freedom to balance the applied loads. 

Taking all known values to the left side, first set of these equations can be 
rewritten as 

{Pd - [K12] {q2} = [KII ] {q, } ..... (4.25) 

The reduced stiffi1ess matrix of the structure [ Kll1 is usually non-singular 

and can be inverted so that unknown displacements {qd and the reactions 

{R} can be evaluated from 

{qd = [Kllr1 ({ P,}- [K12] {q2}) ...•• (4.26) 

{R} = {P2 }= [K21 K221{::} =[K21 ]{ql}+ [K22 ]{q2} ..... (4.27) 
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In case of specified zero displacements {q2}, eq.(4.24) reduces to 

••••• (4.28) 

This procedure is equivalent to deleting rows and columns corresponding to 
the fixed degrees of freedom from the assembled stiffness matrix, 
displacement vector and load vector. The reduced stiffness matrix [Krl is a 
non-singular matrix. 

The unknown displacements are now obtained by using a suitable matrix 
inversion algorithm like Gauss elimination method or Gauss-Jordan method 
or Cholesky method. Eq. (4.26) and (4.27) thus simplify to 

{qd = [Kllr l {Pd or {ur } = [Krr l {Pr } ••••• (4.29) 

and {R} = {P2} = [K2d {qd ..... (4.30) 

In the displacement formulation, displacements are calculated in the global 
coordinate system for the entire structure while the stresses are calculated in 
each element, in the local or element coordinate system, from the nodal 
displacements of that element using 

{ae} = [O]{E} = [0][ Be 1 fUel 

In a structure with 'm' fixed degrees of freedom, assembling the complete 
stiffuess matrix and then deleting some rows and columns will involve more 
computer memory as well as more time. It is therefore a common practice to 
ignore the rows-and columns of element stiffness matrices corresponding to 
the fixed degrees of freedom during the assembly process, thus storing [Krl 
of order (n-m) x (n-m) only. In that case, calculation of reaction values 
corresponding to the fixed degrees of freedom requires storing appropriate 
terms [K2d in a different matrix. 

(b) Penalty approach 

In this technique, a quantity C is added to the diagonal term in the row 
corresponding to the specified displacement (nth OOF) while (C x qn) is 
added to the force term of the corresponding equation, where C is a large 
stiffness value, usually max (kij) x 104

• The assembled stiffness matrix is 
then inverted by anyone of the conventional approaches. This method gives 
a very small value of the order of 10- 4 for the displacement qn corresponding 
to the fixed degree of freedom. This displacement value can be reduced 
further by using a smaller value of C. This may give rise to numerical errors 
during the inversion of the stiffness matrix. Reaction is then obtained from 
Rn = C x qn. This approach was used in the first general purpose software 
(SAP-IV) developed by Prof. Wilson and his associates at the University of 
Southern California. This method is equivalent to adding a spring of very 
large stiffness value in the direction of the fixed degree of freedom. Member 
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force calculated for the spring element indicates reaction corresponding to 
the fixed degree of freedom. The size of the matrix to be inverted is large in 
this approach of order n x n, without deletion 'of rows and columns 
corresponding to the fixed degrees of freedom and is, therefore, !!!ll usually 
adopted now. 

(c) Multi-point constraints 

There are many situations in trusses where the end supports are on inclined 
plane and do not coincide with the coordinate system used to describe the 
truss. In such cases, the displacement and force components along the 
coordinate axes have to be resolved along and perpendicular to the inclined 
plane and necessary conditions specified on them. 

UT = u cos e + V sin e 
PT = Px cos e + Py sin e 
V N = --U sin e + V cos e = 0 

orV=tan e U 

Some other types of multi-point constraints are those linking 
displacement of one node with that of another. A few of them are shown 
below, with node 1 as the fixed point and node 2 as the point of load 
application. If '0' is the gap, U3 = U2 - 0 can be substituted in the load
displacement relations to reduce the number of unknowns by 1 and 
corresponding columns of stiffness matrix are modified. Accordingly, order 
ofthe stiffness matrix also reduces by 1. 

r--

-+~-+~ 
I 

--+ I 
I 

'--

--.jo~ ---+I oj.- ---+l8j.-
3 

11 21 
I 3 

11 2 3 2 

Case - I Case - 2 Case - 3 

4.7 BEAM ELEMENT STIFFNESS MATRIX BY VARIATIONAL ApPROACH 

Let us consider bending of a typical beam of uniform cross section in a plane 
perpendicular to its axis, due to load and moment applied at its two ends. From 
strength of materials, it is well known that its deformed shape is a curve and can 
not be represented by a linear function. Considering 2nd order polynomial 
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having three coefficients, with deflection alone as the nodal degree of freedom 
fails to express the three coefficients in terms of the two nodal deflections. Also, 
natural boundary conditions at the ends of the beam may include not only 
deflection but also the slope. Hence, a cubic polynomial is generally used and 
its four unknown coefficients are represented in terms of deflection and slope 
(first derivative of deflection) at each end. 

If X-Y is the plane of bending, Py and Mz are the loads applied while v and 
ez are the deflection and slope in the plane of bending, 

Let vex) = at + a2.X + a3.x2 + a4.x3 = [1 X x2 x3] {a 1 ..... (4.37) 

and e z = dv =[0 1 2x 3x2 ]{a} 
dx 

or {:J={U}={f(XW {a} ..... (4.38) 

Choosing node i as the origin of local coordinate system for this element 
with X-axis along the axis of the element and substituting x = 0 at node i and 
X =IL at node j, we get the nodal displacement vector, 

VI 1 0 0 0 at 

(eJi 0 0 0 a2 
L L2 e or rUe} = [G] {a} ..... (4.39) 

Vj a3 
(eJ

J 
0 1 2L 3L2 a4 

Solving for the coefficients {a} and substituting in eq. (4.38) 

u= {f(x)}T {a} = {f(X)}T [Grt {ue} ..... (4.40) 

From theory of bending, 

strain, I> = cr =L = y. de = y(d
2

:) = [B]{U e } ••••• (4.41) 
E R dx dx 

d2v 
where, -2 =[0 0 2 6x]{a}=[0 0 2 6x][G]-t {uJ 

dx 

I 0 0 0 

and so, [8]= y [0 6x] 
0 1 0 0 

0 2 
-31L2 3/L2 -2/L -IlL 

2/e lIL2 _2/L3- l/L2 

= (yIL3)[6(2x - L) 2L(3x - 2L) -6(2x - L) 2L(3x - L)] ..... (4.42) 
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..... (4.43) 

where, 

v 

2L(3x-2L) -6(2x-L) 2L(3x-L)]dx 

12 6L -12 6L 

E Iz 6L 4L2 -6L 2L2 
=0 -12 -6L 12 -6L 

..... (4.44) 

6L 2L2 -6L 4L2 

4.8 GENERAL BEAM ELEMENT 

A beam in a space frame is generally subjected to axial load, torsion load and 
bending loads in two planes, due to the combined effect of loads acting at 
different locations of the space frame and in different directions, as shown in the 
figure. 

• •..•.•.•...........•... ~ X 
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If a single beam AB in a space frame with concentrated loads Ph P2, P3 and 
P4 acting on some members is considered, load PI contributes to axial load 
giving rise to displacement u; load P2 contributes to bending in X-V plane 
giving rise to deflection V and slope Sz, load P3 contributes to bending in 
X-Z plane giving rise to deflection wand slope Sy and load P4 contributes to 
torsion in AB giving rise to S2. Therefore, general stiffuess matrix for beam AB 
in its local coordinate system should include response ofthe beam for these four 
types of deformations, which are mutually independent. Such OOFs are called 
uncoupled degrees of freedom i.e. torsion of a beam does not result in axial 
elongation or compression of the beam; deflection of the beam in X-Y plane 
does not cause any d.isplacement of the beam in X-Z plane etc. Hence, stiffness 
contribution of a beam in these 6 OOFs can be placed directly, without any 
modifications, in the appropriate positions of the general stiffness matrix of 
order 12 (2 nodes x 6 OOF/node) . 

y v l ,DOF2 

j-:Yl

x

. DOF 5 

u
l
, DOF 1 9x2, DOF 10 

~~~~----------------~---r-+~,DOF7 
9xl , DOF 4 

Z WI' DOF 3 9zl , DOF 6 9Z2' DOF 12 

Stiffness matrix with only axial load response (relating load Px and 
displacement u) is 

Pxl 

Pyl 

Pzl 

Mxl 

Myl 

Mzl 

Px2 

Py2 

Pz2 

Mx2 

My2 

Mz2 

EA 0 0 0 0 0 -EA 0 0 0 0 0 
o 000 0 0 
o 0 0 0 0 0 
o 0 000 0 
o 0 000 0 
o 0 0 0 0 0 

L -EA 0 0 0 0 0 
o 0 000 0 

o 000 0 0 
o 0 000 0 
o 000 0 0 

o 0 0 000 

o 
o 
o 
o 
o 

EA 
o 
o 
o 
o 
o 

00000 
00000 
00000 
00000 
00000 

00000 
00000 

00000 
00000 
00000 
00000 

ul 

VI 

WI 

Sxl 

SYI 

Szl ..... (4.45) 
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Stiffness matrix with only torsion load response (relating load Mx and 

displacement 9x) is 

Pxl 0 0 0 0 0 0 0 0 0 0 0 0 ul 

PYI 0 0 0 0 0 0 0 0 0 0 0 0 VI 

Pzl 0 0 0 0 0 0 0 0 0 0 0 0 WI 

Mxl 0 0 0 GJ 0 0 0 0 0 -GJ 0 0 9xI 

My) 0 0 0 0 0 0 0 0 0 0 0 0 9YI 

Mzl 0 0 0 0 0 0 0 0 0 0 0 0 9z1 = .. (4.46) 
Px2 L 0 0 0 0 0 0 0 0 0 0 0 0 u2 

Py2 0 0 0 0 0 0 0 0 0 0 0 0 v2 

Pz2 0 0 0 0 0 0 0 0 0 0 0 0 w 2 

Mx2 0 0 0 -GJ 0 0 0 0 0 GJ 0 0 9x2 

MY2 0 0 0 0 0 0 0 0 0 0 0 0 9y2 

Mz2 0 0 0 0 0 0 0 0 0 0 0 0 9z2 

Stiffness matrix for bending in X-Y plane (relating Py and M z with 

displacements V and 9z) is 

P XI 0 0 o 0 0 0 0 0 o 0 0 0 UI 

Pyl 0 12EI,le o 0 0 6EIJL o -12EI z /e o 0 0 6EI,/L VI 

P zl 0 0 o 0 0 0 0 0 0 0 0 0 WI 

MXI 0 0 0 0 0 0 0 0 0 o 0 0 8,1 

Myl 0 0 0 0 00 0 0 0 0 o 0 0 8 YI 

Mzl ' I 0 6EIz /L 0 0 0 4EIz 0 -6EIz /L 0 0 0 2EI, 8,1 
--

P X2 L 0 0 0 0 0 0 0 0 0 0 0 0 u2 

Py2 o -12EIz /e 0 0 0 -6EI,/L 0 12EIz Ie 0 0 0 -6EIz /L v2 

P,2 0 0 0 0 0 0 0 0 0 0 0 0 w2 

Mx2 0 0 0 0 0 0 0 0 0 o 0 0 8 x2 

MY2 0 0 o 0 0 0 0 0 000 0 8y2 

M,2 0 6EI z /L o 0 0 2EI, 0 -6Elz /L 000 4EIz 8z2 

..... (4.47) 

Stiffness matrix for bending In X-Z plane (relating Pz and My with 
displ.acements wand 9y) is 
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o 0 
o 0 

o 
o 

o 
o 

o 
o 

000 
000 

o 
o 

o 
o 

o 
o 

Pzl 0 0 12EIylL2 0 6Ely /L 0 0 0 -12Ely/L2 0 6ElyIL 0 WI 

Mxl 0 0 0 0 0 0 0 0 0 0 0 0 9.1 

Myl 0 0 6Ely IL 0 4EIy 0 0 0 -6Ely IL 0 2EIy 0 Oyl 

M.. 0 0 0 0 0 0 0 0 0 0 0 0 9 .. 

p.2 L 0 0 0 0 0 0 0 0 0 0 0 0 u2 

Py2 0 0 0 0 0 0 0 0 0 0 0 0 V2 
Pz2 0 0 -12EIy /L2 0 -6EIy /L 0 0 0 12Ely/L2 0 -6EI y /L 0 w 2 

M.2 0 0 0 0 0 0 0 0 0 0 0 0 9.2 
My2 0 0 6Ely/L 0 -12EIy/L2 0 0 0 -6EIy/L 0 4EIy 0 9y2 
Mz2 0 0 0 0 0 0 0 0 0 0 0 0 9.2 

.•••• (4.48) 

The combined stiffness matrix of a general beam element thus includes 
stiffness coefficients linking loads along the three coordinate axes and moments 
about the three axes at each end of the beam to the corresponding displacements 
and rotations, and is obtained by a simple addition of the coefficients of the 
above four matrices. 

P", EA 

Pyl 0 

Pzl 0 

M", 0 

M" 0 

M" =! 0 
P", L -EA 

P" 0 

P" 0 
M", 0 

M" 0 
Mol 0 

o 
12E1,1L' 

o 
o 
o 

6EI,IL 

o 
- I2EI,IL' 

o 
o 
o 

6EI,1L 

o 
o 

12EI,IL' 
o 

6EI,1L 
o 
o 
o 

-I2EI,IL' 

o 
6EI,1L 

o 

4.9 PIPE ELEMENT 

o 0 

o 0 

o 6EI,1L 
GJ 0 

o 4EI, 

o 0 

o 0 

o 0 

o -6EI,1L 
-GJ 0 

o 2EI, 
o 0 

o -EA 0 

6EI,1L 0 -12EI,IL' 

o 0 0 

o 0 0 

o 
4EI. 0 - 6E,IL 

o EA 0 

- 6EI,IL 0 

o 0 

o 0 

I2EI,IL' 
o 
o 

o 0 0 

12EI,IL' 0 - 6EI,1L 

o 0 

o 0 

-12EI,IL' 0 

o GJ 

-6EI,1L 0 

o 0 

o 0 

o 0 

I2EI,IL' 0 

o GJ 

-6EI,1L 0 

o 0 

o 
o 

6EI,1L 
o 

2EI, 

o 
o 
o 

-6EI,1L 

o 
4EI, 

o 

A pipe element is essentially a one-dimensional element subjected to: 

(i) distributed load due to self weight and weight of fluid inside, 

(ii) concentrated loads in the form of pipe fittings like valves, 

6E~/L 1 ~: 
o w, 

o Ox! 

o 9)'1 

2EI, 6" 

o "1 
-6EI;JL V 2 

o w , 

8", 

o 8" 
4E1, 8" 

•• (4.49) 

(iii) axial loads due to change of direction of fluid flow in pipe bends, 
T -joints etc. and due to restrained thermal expansion. 

It is thus similar to a generalised beam element, except that stiffness of a 
beam member is a function of a geometric properties (I, L) and material 
property (E), whereas stiffness of a pipe element is a function of load (internal 
pressure) also. Stiffness increases due to internal fluid at high pressure (also 
called pressure stiffening). 

103 
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For these reasons, this is listed as a different element, in many general 
purpose software even though the analysis is completely similar to that of a 
three-dimensional frame (with general beam elements). 

4.10 SUMMARY 

• Finite Element Method (FEM) is based on mlDlmum potential 
energy of the system, as applied to a model of the component 
consisting of finite number of elements connected at common 
nodes. In the displacement method, which is commonly used in the 
solution of mechanical problems, load-displacement relations (or 
stiffness coefficients) are calculated for each element satisfYing the 
condition that variation of potential energy (sum of work done and 
strain energy) for any virtual displacement is zero. 

• In 1-0 elements, a polynomial expression is assumed for the 
variation of displacement along its axis. Axial load carrying truss 
element is identified by its axial displacement (1 OOF/node) at its 
two end points (nodes) and is modeled by a linear variation of 
displacement along its axis. A torsion element is similarly identified 
by the rotation about its axis (1 OOF/node) at its two end points 
(nodes) and is modeled by a linear variation of rotation along its 
axis. Beam element is identified by deflection normal to the axis 
and slope (derivative of displacement) at its two end points 
(2 OOF/node) and is modeled by a cubic polynomial for the 
deflection, in each of its two planes of bending. Stiffness matrix of 
a general beam element with 6 OOF per node is obtained by a 
combination of the above, treating them as uncoupled responses. 

• Stiffness coefficients relate nodal displacement components with 
nodal load components, both being vectors. These vector 
components of different elements can be combined only when they 
are all oriented in the same directions. Hence, element stiffness 
matrix obtained in its local coordinate system, defined w.r.t. its 
axis, is transformed into a common or global coordinate system, 
using a transformation matrix (function of orientation of the 
member w.r.t. global coordinate system) if different elements are 
inclined to each other. 

• The assembled stiffness matrix represents unconstrained system 
(with rigid body modes included) and hence can not be inverted (or 
has infinite solutions). Specified displacement boundary conditions 
are applied to avoid rigid body modes and thus obtain a unique 
solution for the given problem. 
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• Onc· of thc standard techniques for the solution of simultaneous 
equations \\ III give primary unknowns (nodal displacements) in 
glooal coordinate system, since the nodes are common to many 
elements. Using stress-displacement relationship of each element, 
stresses in local coordinate system are ootained from the nodal 
displacements. 

OBJECTIVE QUESTIONS 

1. Transformation matrix for all elements 

(a) is always same (b) is different 

(c) depends on element axes (d) depends on material 

2. Transformation matrix relates 
structural coordinate system 

in element coordinate system with 

(a) displacements (b) stresses 

(c) stiffness coefficients (d) material properties 

3. Primary variable in FEM structural analysis is 

(a) displacement (b) force (c) stress 

4. A singular stiffness matrix means 

(a) unstable structure 

(b) one or more DOF are unrestrained 

(c) wrong connectivity of elements 

(d) wrong solution expected 

(d) strain 

5. One possible load in structural analysis is the specified 

(a) nodal temperature (b) stress in an element 

(c) heat flow (d) strain in an element 

6. Assembled stiffness matrix after applying houndary conditions is NOT 

(a) square (b) symmetric (c) handed (d) singular 

7. Detenninant of assembled stiffness matrix before applying boundary 
conditions is 

(a) < 0 (b) = 0 (c) > 0 (d) depends on the problem 

8. Determinant of assembled stiffness matrix after applying boundary 
conditions is 

(a) < 0 (b) = 0 (c) > 0 (d) depends on the problem 

1.05 
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9. A pipe with internal pressure behaves __ a hollow pipe 0"[ same section 

(a) with exactly same deflection as 

(b) with lesser bending deflection than 

(c) with more bending deflection than 

(d) with a different type of deflection 

10. Any point in a structure can have maximum of _ OOF 

(a) 2 (b) 3 (c) 4 (d) 6 

II. A 1-0 structural element is a 

(a) truss element (b) beam element (c) pipe element (d) all of them 

12. Meshing for 1-0 elements is 

( a) essential (b) optional 

( c) reduces input data (d) depends on other data 

13. A structure with loads at joints only is usually modeled by __ _ 

(a) truss elements (b) beam elements 

(c) pipe elements (d) anyone ofthem 

14. A frame with nodal loads only is modeled as an assembly of truss elements, 
if resistance to rotational degree of freedom of joints is 

(a) very small 

(c) not related 

(b) very large 

(d) depends on other data 

15. A frame with nodalloarfs only is modeled as an assembly of beam elements, 
if resistance to rotational degree of freedom of joints is 

(a) very small 

(c) not related 

(b) very large 

(d) depends on other data 

16. A frame with distributed loads along members is modeled by an assembly 
of elements 

(a) truss (b) beam (c) pipe (d) anyone of them 

17. A frame with welded joints can be approximated by truss elements 

(a) always (b) sometimes 

(c) never (d) depends on assumed flexibility of rotation 
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18. A structure assembled by multiple bolts/rivets at each joint is modeled by 
truss elements 

(b) sometimes (a) always 

(c) never (d) depends on assumed flexibility of rotation 

19. Stress across any 1-0 element is assumed to be constant 

(a) true for beam elements (b) true for truss elements 

(c) true for pipe element (d) true for all 1-0 elements 

20. A bar is mooeled as 1-0 element only if its 

(a) area of cross section is small 

(b) moment of inertia is small 

(c) length is very large compared to cross section dimensions 

(d) all the above 

21 . A truss element in space has a stiffness matrix of order 

(a) 2 x 2 (b) 4 x 4 (c) 6 x 6 (d) I x 1 

22. A spring element is similar to __ element 

(a) truss (b) beam (c) pipe (d) anyone of them 

23. A plane truss element has a stiffness matrix of order 

(a) 2 x 2 (b) 4 x 4 (c) 6 x 6 (d) 1 x 1 

24. A pipe element differs from a beam element by inclusion of 

(a) cold cut (b) internal pressure stiffening 

(c) anchors (d) sliding supports 

25. Stiffness matrix of a torsion element is of the same order as 

(a) truss element (b) beam element 

(c) pipe element (d) none of them 

26. A spring of stiffness at the supports is used for calculating support 
reactions in penalty approach 

(a) very small (b) same as other connected members 

(c) very large (d) sum of connected members 

27. Penalty approach leads to displacements at supports 

(a) zero (b) very small 

(c) significant (d) depends on stiffness of connected members 
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28. Penalty approach takes time 

(a) more (b) less 

(c) depends on other data (d) no change 

29. Accuracy of sol ution __ with increase of number of beam elements 

(a) improves 

(c) no change 

SOLVED PROBLEMS 

Example 4.1 

(b) reduces 

(d) depends on other data 

Determine the nodal displacements and element stresses by finite element 

formulation for the following figure. Use P=300 k N; A,=0.5 m2; A2=1 m2; 

E=200 GPa 

300 kN 

...... A I •••••••••••••• :--+ ................................ . 

j.-lm 

Solution 

2 
AI =0.5 m 

2 
A2 = 1 m 
E=200GPa 

The structure is mo~aled with 3 axial loaded elements connected by nodes 1-2, 

2-3 and 3-4 as shown below 

------ 2 ----- 3 -------4 

Stiffness matrices of elements I, 2 and 3 are given by 

where, k,= A,E/L, = 0.5 x 200 x 10911.0 = 1.0 x 10" 

and k2 = A2 E.':..2= 1 x 200 x 109/2.0 = 1.0 x 10" 
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Assembled stiffness matrix is obtained by adding corresponding terms as, 

kl -kl 0 0 -I 0 0 

kl=[K]= 
-kl kl +k2 -kl 0 

=1.0x lOll 
-I 2 -I 0 

0 -kl kl +k2 -k2 0 -I 2 -I 

0 0 -k2 k2 0 0 -I 

•..•. (4.32) 

Corresponding assembled nodal load vector and nodal displacement vector 

are 

0 UI 

p= 
300,000 u2 ;q= 

0 u3 

••••• (4.33) 

R u4 

Thus, 

[K] {q} = {P} 

or 

-1 0 0 ul 0 

1.0 X 1011 
-1 2 -1 0 u2 300,000 

0 -1 2 -1 u3 0 
••••• (4.34) 

0 0 -1 u4 R 

After applying boundary condition, U4=0, the fourth row and fourth column 

are removed resulting in 

r 
1 -1 01 {UI} { 0 } 1.0xlOII -1 2 -1 u2 ~ 300,000 

o -1 2 u3 0 

Solving the above set of equations gives, 

UI = 6 x lO-6 m; 

Stress in element-I, 

al = E [Bd {ql } = E [-IILI IILI] {:J = 0 N/m2 

••••• (4.35) 

••••• (4.36) 
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Stress in element-2, 

0"2 = E [B2] {q2} = E [-I1L\ l/Ld {~:} = - 6 x 105 
N/m

2 

Stress in element-3, 

0"3=E[B3] {q;}=E[-I/L2 I1L2] {~;} =-3 x 105 N/m2 

Example 4.2 

An axial load P=200x 1 03 N is applied on a bar as shown. Using the penalty 
approach for handling boundary conditions, determine nodal displacements, 
stress in each material and reaction forces. 

, 9' 
I -A 1 =2400mm-;E 1 =70 x ]0 N/m-

(I 2 
2 - A2 - 600 I11Ill2; £2 - 200 x ]0 N/m 

I+-- 200 ~ 300 -+I+- 200 --+I 

Solution 

-----2-----3----- 4 

Considering a 3-element truss model, stiffness matrices of elements 1,2 and 3 
(connected by nodes 1,2; 2,3 and 3,4 respectively) are given by, 

[K\]=[ k\ -k\]; [K3]=[ k\ -k\]; [K2]=[ k2 -k2] .. (4.37) 
-k\ k\ -k\ k\ -k2 k2 

where 

k\ = AJE\/L\ = 2400 x 70 x 1031200 = 84 x 104 

and k2 =A2 E2 /L2 =600 x 200 x 103/300=40 X 104 

Assembled stiffness matrix is obtained by adding corresponding terms as, 

k\ -k\ 0 0 84 -84 0 0 

[K]= -k\ k\ +k\ -k\ 0 
=104 -84 84+40 -40 0 

0 -k j k\ +k2 -k2 0 -40 40+80 -84 

0 0 -k2 k2 0 0 -84 84 
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Corresponding assembled nodal load vector and nodal displacement vector 
are 

0 u j 

p= 
200,000 u2 

q= 
0 u3 

0 u4 

For the penalty approach, C = max(k,) x 104 = 124 x 104 

Since the bar is fixed at nodes I and 4, the equations are'then modified using 

Cas, 

0 84+ 124x 104 -84 0 0 

200,000 
=104 -84 124 -40 0 

0 0 -40 124 -84 

0 0 0 -84 84+ 124x 104 

From 4th eqn. 0 = 104 [-84 U3 + (84 + 124 x 104) U4] 

or U4 = 6.7737 X 1O- 5 113 

From 3rd eqn 0 = 104 [-40 U2 + 124 113 - 84 U4] 

substituting for 114 from the above, 

U3 = 0.3226 U2 

2nd eqn now becomes, 

200,000 = 104 [-84 Uj + 124 U2 - 40 U3] 

or 

I st equation gives, 

0= 104 [(84 + 124 x 104) UI -84 U2] 

From these two equations, 

Uj = 1.2195 x 10-5 mm; U2= 0.180034 mm 

Substituting in 3rd and 4th eqn., 

U3 = 0.058079 mm; U4 = 3.9341 x 10-6 mm 

Reactions, RI = -CUI = (124 x 108).(1.2195 x 10-5
) = -151.22 x 103 N 
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Stresses in the elements, 

0") = E)E) = E)B)q)_2 

= 70 x 103 [2 1] {1.2195 x 10-
5

} 

200 200 0.180034 

= 63.01 N/mm2 

0"2 = E2E2 = E 2B 2q2-3 

= 200 x 103 [-=l I] {0.180034} 
300 300 0.058079 

= -81.3 N/mm2 

0"3 = E3E3 = E)B)q3-4 

=70x10 - -3 [-1 1]{ 0.058079 } 
200 200 3.9341 x 10-6 

= -20.3 N/mm2 

Elimination method 

Since the bar is fixed at nodes 1 and 4, corresponding rows and columns of the 
assembled stiffness matrix are deleted, resulting in {P}R = [K]R {uh 

or {200,000} = 104 [124 - 40] {u 2} 
o -40 124 u3 

Solving these two simultaneous equations, we get 

U2= 155/861 =0.180023mm 

and U3 = 501 861 = 0.058072 mm 

Reactions can now be obtained by substituting the nodal displacements in 
the deleted equations of the assembled stiffness matrix. 

R) = 104 [(84 + 124 x 104) -84 0 0] [u) U2 U3 U4]T 

=-84 x 104u2 =-84 x 104 (155/861) = 151219N 

~ = 104 [0 0 -84 (84 + 124 x 104) ] [u) U2 U3 U4]T 

= -84 x 104 U3 = -84 x 104 (50/861) = 48780 N 

These reaction values are identical to hose obtained by the penalty approach 
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Check: For force equilihrium of the structure, 

Rl + ~ = Applied load P :::: 200 kN 

This equation is satisfied with the results obtained 

Note that results by penalty approach match very closely with those by 

elimination approach. 

Example 4.3 

Consider the truss element with the coordinates I (10,10) and 2 (50,40). If the 

displacement vector is q=[ 15 10 21 43]T mm, then determine (i) the vector q' 

(ii) stress in the element and (iii) stiffness matrix if E=70 GPa and A=200 mm2 

Solution: 

(i) The nodal displacement vector in local coordinate system 

[
I mOO] {q'} = 0 0 1 m {q} 

where 1 = (x2-x\)/L and m=(YrYl)/L are the direction cosines of the element 

Length of the element, 

L=~(X2 -X1)2 +(Y2 -Yl)2 =~(50-10)2 +(40-IOi =50mm 

1=(50-10)=i. m=(40-1O)=~ 
50 5' 50 5 

15 

{q,}=[4~5 3~5 4~5 3~5] ~~ -{;10;~5} 
43 

(ii) Stress in the element, (J = E E = E[ ~I ~] {q'} 

=70000 - -[
-11 ] { 90/5 } 

, 50 50 213/5 

= 34.44 x 103 N/mm2 
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(iii) Stiffness matrix of the element, 

12 1m _/2 -1m 16 12 -16 -12 

[K]= AE 1m m2 -1m _m 2 200x 70,000 12 9 -12 -9 

L _/2 -1m 12 1m 50x25 -16 -12 16 12 

-1m _m 2 1m m 2 -12 -9 12 9 

Example' 4.4 

Determine the stiffness matrix, stresses and reactions in the truss structure 
shown below, assuming points 1 and 3 are fixed. Use E = 200 GPa and A = 
1000 mm2

• 

Solution 

Stiffness matrix of any truss element is given by 

12 1m _/2 -1m 

[K]= AE 1m m2 -1m _m 2 

L _/2 -1m 12 1m 

-1m _m 2 1m m2 

T [i] 

500mm Y 

1 yI---+ .x 

1-- 750mm 

In the given problem, L] = 750 mm; L2 = ~[7502 + 5002] = 250 JU 

For element-I, 1= (X2 -x]) =1 and 
L] 
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o -1 0 

[K] _ AE 0 0 
1- 750 -1 0 

o 0 

o 0 

1 0 

o 0 

AE = 266.67 x 103 

750 

Forelement-2, 1= (X3 -X 2 )=_3_ and 
L2 J13 

9 6 -9 -6 

[K] _ AE 6 4 -6 -4 
2 - 250 x 13 x J13 -9 -6 9 6 

-6 -4 6 4 

AE = 17.07 x 103 
250x13J13 

The assembled stiffness matrix is given by appropriate addition of stiffness 

coefficients of the two elements, 

266.67 0 -266.67 0 0 0 

0 0 0 0 0 0 

[K]= 103 -266.67 0 266.67 -153.63 102.42 -153.63 -102.42 

0 0 -102.42 68.28 -102.42 -68.28 

0 0 -153.63 -102.42 153.63 102.42 

0 0 -102.42 -68.28 102.42 68.28 

After applying boundary conditions that UI = VI = U3 = V3 = 0, the load

displacement relationships reduce to {P}R = [K]R {U}R 

{ 
0 }=103[-266.67+153.63 102.42]{U 2 } 

- 50000 102.42 68.28 v 2 

Solving these two simultaneous equations gives 
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Displacements of element-l in local coordinate system are given by 

o 

{ql'}=[~ ~ ~ ~] 0.281~ ={0.281~} 
-1.154 

Stress in element-I, a 1 =EE1 =E[-11L llL]{q\} 

= 200 x 103 x 0.2813 1750 = 75 N/mm2 

Displacements of element-2 in local coordinate system are given by 
0.28313 

{ ,}=[3/JIj 2/JIj 0 0] -1.154 
q2 0 0 3JIj 2JIj 0 

o 

Stress in element-2, a 2 =EE2 =E[ ~1 ~J{q/} 

=200xl03 x (-0.406) =90.08N/mm2 
250JIj 

Reactions at the two fixed ends are obtained from the equations of th~ 
assembled stiffness matrix corresponding to the specified zero displacements 

R 1- X 

R
1
_y 

R 1- X 

R 1_y 

266.67 

=103 0 

0 

0 

-75014.3 

o 
74976.6 

49984.4 

0 - 266.67 

0 0 

0 -153.63 

0 -102.42 

N 

o 
0 0 0 0 

0 0 0 0.2813 

-102.42 153.63 102.42 -1.154 

- 68.28 102.42 68.28 0 

0 

The exact solution can be obtained from the equilibrium conditions as 
follows -

The force in element-2 is such that its vertical component IS equal to the 
applied load P. Horizontal component ofthis force is given by 

P x (750/500) = 75000 N 
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R3- y + P = 0 or R3_y = 50,000 N 

R3-X + R\_x = 0 or R\-x = - R3-X = 75,000 N 

It can be seen that the approximate solution obtained by FEM is in close 
agreement with the exact solution obtained from equilibrium consideration. 

Example 4.5 

Determine the nodal displacements, element stresses and support reactions in 
the truss structure shown below, assuming points 1 and 3 are fixed. Use E = 

70 GPa and A = 200 mm2. 

Solution 

Stiffness matrix of any truss element is given by 

12 1m _/2 -1m 

[K]AE 1m m2 -1m _m 2 

L _/2 -1m 12 1m 

-1m _m 2 1m m2 

In the given problem, L\ = 500 mm ; 

For element-I, 1= (X2 - XI) =1 and 

L2 =~[4002 +3002] =500mm 

m=(Y2-Y\)=0 
L\ 

1 0 -1 0 

[Kl = AE 0 0 0 0 
500 -1 0 0 

o 0 0 0 

AE =28xI03 

500 

L\ 

21 P 12 kN 

---f-- /'~~------------------------~I~ 

300 mmj : Y I 

1 i ! 
: I 

-- ---~--------------------------------~-----------------: I 
;. 500 mm .:" 400 mm ----+l . " 
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For element-2, 1= (X3 -x2)=i and m=(Y3-Y2)= -3 
L2 5 L2 5 

16 -12 -16 12 

[K] _ AE -12 9 12 -9 
2 - 500x25 -16 12 16 -12 

12 -9 -12 9 

AE 28x 103 

---=---
25x500 25 

The assembled stiffness matrix is given by appropriate addition of stiffness 
coefficients of the two elements, 

0 -1 0 0 0 

0 0 0 0 0 0 

[K]=28xl03 -1 0 1+(16/25) -12/25 -16/25 ]21125 

0 0 -12/25 9/25 ]2/25 -9/25 

0 0 -16/25 12/25 16/25 -]2/25 

0 0 12/25 -9/25 -12/25 9/25 

After applying boundary conditions that UI = VI = U3 = V3 = 0, the load-
displacement relationships reduce to {P}R = [K]R {U}R 

{ O} 3[]+(16/25) -12/25]{U2} =28xlO 
-12000 -12/25 9/25 v2 

Solving these two simultaneous equations gives 

U2 = - 417 mm and V2 = - 4112] mm 

Displacements of element-l in local coordinate system are given by 

o 

II 0 0 0] 
, {ql}= 0 0 1 .0 -4/~ ={-4/~} 

-41121 

Stress in element-I, °1 = E 6 1 = E[ ~1 ~ ] {ql} 

_ 70xl0
3 (-4) _ SON/ 2 

- X - -- mm 
500 7 
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Displacements of element-2 in local coordinate system are given by 

-417 

{ } = [41 5 - 3 1 5 0 0] - 411 21 . = {I 5 1 21} 
q2 0 0 4/5 -3/5 0 0 

o 

Stress in element-2, a 2 = E E2 = E[ ~1 ~}q 2} 

=_ 70 X 10
3 

x (.!2) =-100 N/mm 2 

500 21 

Reactions at the two fixed ends are obtained from the equations of the 

assembled stiffness matrix corresponding to the specified zero displacements 
o 

R I-X 0 -1 0 0 0 0 
R

I
_y 

=28xl03 0 

R 3- X 0 

R 3- y 0 

16000 

0 
= 

-16000 

12000 

Example 4.6 

0 

0 

0 

N 

o 0 0 0 -417 

-16/25 

12125 

12/25 16/25 

-9/25 -12/25 

-12/25 

9/25 

- 41/21 

o 
o 

Estimate the displacement vector, stresses and reactions for the truss structure as 

shown below. 

Solution 

Stiffness matrix of any truss element is given by 

12 1m _12 -1m 

[K]= AE 1m m 2 -1m _m 2 

L _/2 -1m 12 1m 
-1m _m 2 1m m 2 
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T 
2 

~ 
30n mm [2] 

y 

1 Lx 200N 

.. 14----- 400 mm-----~.I 

In the given problem, 

LJ =400 mm; 

1.2 = 300 mm; 

and L3 =~4002 + 3002 =500mm 

For element-I, 1= (X2 - x J) =1 and m = (Y2 - YJ) =0 
LJ LJ 

(x -x ) m=(Y3-yJ For element-2, 1= 3 2 = 0 and -1 
L2 L2 

I 0 -1 0 0 0 0 0 

[K] _ AE 0 0 0 0 . [K] _ AE 0 1 0 -1 
J - 400 -I 0 1 0 ' 2 - 300 0 0 0 0 

0 0 0 0 0 -1 0 

For element-3, 1= (X3 - x J) = i and m=(Y3-YJ)= -3 
L3 5 L3 5 

16 -12 -16 12 

[Kh-~ -12 9 12 -9 

12500 -16 12 16 -12 

12 -9 -12 9 
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The assembled stiffness matrix is given by appropriate addition of stiffness 
coefficients of the two elements, 

1 14+ 16/25 -121125 -1/4 0 -161125 12 I 125 

-121125 9/125 0 0 121125 -91125 

[K]= AE 
-1/4 0 1 I 4 0 0 0 

100 0 0 0 1/3 0 -1/3 

-16/125 121125 0 0 16/25 -12/125 

121125 -91125 0 -1/3 -121125 113 + 91125 

After applying boundary conditions that UI = VI = V2 = 0, the load-
displacement relationships reduce to {Ph = [K]R {uh 

rOCOS30 } [/4 0 

16/~J{:J - 500Sin 30 = AE 0 1 I 3 
100 

-200 0 0 

These three equations give 
fj fj 

u 2 =400x500--=100000-mm 
2AE AE 

- 500 x 300 75000 - 200 x 12500 - 250000 
v 2 = 2AE =--A-E- mm u 3 = 16AE 16AE mm 

Displacements of element-3 in local coordinate system are given by 

o 

{ ':.1 t =[4/5 -3/5 0 0] 0 {O} 
q3f 0 0 il/5 -3/5 -250000/16AE = 200000/16AE 

o 
Stress in element-I, 

EU 2 fj 250fj 2 
(J 1 = E I:: I = -- = Ex 100000 ( ) = N/mm 

LI 400AE A 

Stress in element-2, 

_ E _ E v 2 _ E x 75000 _ 250 N I 2 
(J2 - 1::2 -"L; - (300AE) --;;: mm 

Stress in element-3, 

_ E - E q 2 _ E x 200000 _ 400 N I 2 
(J3 - 1::3 -~ - (500AE) --;;: mm 
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Reactions are obtained from the equations corresponding to the fixed OOFs 
in the assembled stiffness matrix as given below: 

R _(AE)[(!+~) 
I-x - 100 4 125 

12 -1 
0 

-16 12 ] 
125 4 125 125 

~ ~~[( ~too~H ~~:)( -)2::EOO)] 
= -250J] +200N 

ul 

VI 

RI_
y =(~~)[ ~;: 1~5 0 0 /225 ;2~] ~: 

= AE [(12/125)(-250000116 AE)] = -150 N 
100 

-12 

125 

u l 

VI 

u2 

v2 

u3 

V3 

= AE [(=!) x (- 75000) + (~) (- 250000)] = 400 N 
100 3 AE 125 16AE 

Check: For equilibrium of the truss, from basic strength of materials, 

RI -x = -500 cos 30 +200 N 

and RI_y + R3-y = 500 sin 30 = 250 N 

These two equations are satisfied by the results obtained 
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Example 4.7 

For the three bar truss shown in figure below, determine the displacements of 

node 'A' and the stress in element 3. 

1+--450 ~I" 450 ~I" 350--.j 

A 

V! DT 

A I__________________I x 

18KN 

A = 250 mm2
• E = 200 GPa , 

For a truss element with direction cosines I and m, w.r.t. global X-axis, 

12 1m _/2 -1m 

[Ke'J= ALE 
1m m2 -1m _m 2 

_12 -1m 12 1m 

-1m _m 2 1m m2 

where, Elem.No. Nodes L(mm) I=X/L m = (Y/L) 

A B 750 -0.6 0.8 

2 AC 1000 0.8 0.6 

3 AD 750 0.6 0.8 

After assembling and applying boundary conditions, u = v = 0 at b, c and d 

we get 

{ 
O} [ 10

3) [ 0.36/3 + 0.64/4 + 0.36/3 - 0.48/3 + 0.48/4 + 0.48/3] {u I} 
= 250x200x-

- 18000 250 - 0.48/3 + 0.48/4 + 0.48/3 0.64/3 + 0.36/4 + 0.64/3 v I 

Solving these two equations, we get 

UI = 0.06036 mm; VI = -0.2012 mm 
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Stress in element 3, 

03 =EE3 =E[Ih]{q'}A-C =E[ ~l ~}q'}A-C =(~)[-l -m I m]{q}A_C 

0.06036 

= 200 x 10
3 r- 0.6 _ 0.8 0.6 0.8] - 0.2012 

750 0.0 

0.0 

= 33.264 N/mm2 

Example 4.8 

A concentrated load P = 50 kN is applied at the center of a fixed beam of length 
3m, depth 200 mm and width 120 mm. Calculate the deflection and slope at the 
mid point. Assume E = 2 x 105 N/mm2

• 

Solution 

The finite element model consists of 2 beam. elements, as shown here, with 
nodes 1 and 3 at the two fixed supports and node 2 at the location where load P 
is applied. 

---2 3 

ill rn 
Stiffness matrices of elements I and 2 (connected by nodes 1 and 2 ~ 2 and 3 

respectively, each with L = 1500 mm) are given by, 

[K]- E I
z 
[~~ 4~: ~~~ 2~;l- 2xl0

5 
x 62_0-ilQQ3)[ ~~ 4~; ~~~ 

- e -12 -6L 12 -6L - L3 -12 -6L 12 

oL 2U -6L 4U 6L 2U -6L 

Assembling the element stiffness matrices, we get 

PI 12 6L -12 6L 0 0 

W'I 
MI 5 120x 2003 6L 4L2 -6L 2e 0 0 91 

P2 
2 x lOx - ------ -12 -6L 12+ 12 -6L+6L -12 6L w2 12 

M2 15003 6L 2L2 -6L+6L 4L2 +4e -6L 2e 92 

P3 0 0 -12 -6L 12 -16L 
W3 J 

M3 0 0 6L 2L2 -6L 4L2 93 
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After applying boundary conditions VI = V3 = 0 alJd (9z)1 -= (9z)3 = 0, the 
equations reduce to 

5 (120 X 2003 
) 

{
P2 }= 2xl0 x 12 [12+12 

M2 15003 -6L+6L 

The applied loads are P2 =,- 50000 Nand M2 = 0 

- 50000 X 15003 

Therefore, V 2 = [ ( ) 1 = - 0.4395 mm 
2 x 105 x _120 X 200

3 
- x 24 

12 

-P L3 P(2 L)3 
Check: From strength of materials approach, v 3 = -- or --'-~'-

24 EI 192 EI 

=- 0.4395 mm 

and the deflection being symmetric, slope at the center (9zh = o. 
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CHAPTER 5 

CONTINUUM (2-D & 3-D) 
ELEMENTS 

5.1. 2-D ELEMENTS SUBJECTED TO IN-PLANE LOADS 

When one of the cross sectional dimensions, width is significant compared to 
the length of the member while the thickness is very small, it is considered as a 
2-D element. Displacement variation is therefore neglected across the thickness. 
Let us consider the element in the X-Y plane while dimension in the Z-direction 
represents the thickness of the element. The load is assumed to be acting in the 
plane of the element, along X-direction and/or Y -direction. Such a plane 
element has two degrees of freedom per node, displacements along X and 
Y directions. 

/ II 11 
p+t-----:..!..-- j/-+p P 

1-D element 

Y,v 

1 
1 
1 
1 
1 1- ______________ _ 

2-D element 

p 

x,u 

If a concentrated load is applied at a point on the width of the plate, load can 
not be considered as uniformly distributed over the width and hence the 
displacement 'u' at any point is a function of its x and y coordinates. Load 
along X-direction produces lateral strain and, hence, a displacement 'v' in the y
direction (because of Poisson's effect). Thus, displacements u and v are 
functions ofx and y coordinates of the point. 
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In the case of discrete structures, with each member treated as a 1-0 
element, nodes a~ chosen at junctions of two discrete members, junctions of 
two different materials, at points of change of cross section or at points of load 
application. However, in the case of continuum, which is modeled by 2-D or 
3-D elements, there is no unique finite element model for analysis. Each 
engineer may use a particular number of nodes and a particular orientation 
of elements. Hence, the results obtained by different engineers may vary. 
Mandatory safety codes for the design of pressure vessels are not therefore 
based on the results of FEM. The results obtained by FEM have to be suitably 
modified for compliance with mandatory safety codes. Varying number or type 
of elements, but at a higher computational cost, may improve accuracy. 
A judicial compromise has to be made between better accuracy of results and 
computational cost. This aspect is further discussed under 'modelling techniques' 

5.2 SIMPLEX, COMPLEX AND MULTIPLEX ELEMENTS 

Finite elements are classified into three categories. 

• Simplex elements are those obtained by joining n + 1 nodes in 
n-dimensional space. Displacement functions of such elements consist of 
only constant terms and linear terms, if nodal DOFs include only 
translational modes. 

Ex: 2-noded truss (I-D) element, displacement represented by u = a, + a2x 

3-noded triangular (2-D) element, displacement represented by 

u = a, + a2 x + a3 Y 

4-noded tetrahedron (3-D) element, displacement represented by 
u = a, + a2x + a3Y + a4z 

• Complex elements are those elements whose displacement function consists 
of quadratic or higher order terms. Such elements naturally need additional 
boundary nodes and, sometimes, internal nodes. 

Ex: Quadratic models like 6-noded triangular element and 

10-noded tetrahedron element 

Cubic models like 10-noded !riangular element and 

20-noded tetrahedron element 

• Multiplex elements are those elements whose boundaries are parallel to the 
coordinate axes and whose displacement function consists of higher order 
terms. 

Ex: 4-noded rectangle (2-D) element 

8-noded hexahedron (3-D brick) element 
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y 

3 
4 1---------. 

~--------~--_.x 
2 

y 

4~---_i__r 

6 

~-----~----_+x 

Calculation of stiffness matrix for a triangular element is first considered 

since triangular elements are the simplest and can be used to define arbitrary 

boundaries of a component more conveniently, by approximating curved 

boundary with a large number of elements having straight edges. 

5.3 STIFFNESS MATRIX OF A CST ELEMENT 

Let u(x, y) = a] + a2.x + a3.y and v(x,y) = a4 + as.x + ~.y be the displacements in 

the element. Displacement function f(x,y), representing u or v, can be 

graphically represented by the following figure. In general, I-I', 2-2' and 3-3' 
are not equal. 

Hx,y) 3' 

y 

x 

FIG U R E 5.1 Graphical representation of displacement function on a triangle 

Substituting nodal coordinates, while the element 1-2-3 displaces to 1'-2'-3' 
on application of load, we get nodal displacement vector as 
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where, 

or 

r UI XI YI 0 0 0 

r U2 X2 Y2 0 0 0 a2 
u) 1 x) Y) 0 0 0 a) 

= 
VI 0 0 0 XI Yl la, 
V2 0 0 0 X2 Y2 a5 

v) 0 0 0 x) Y) a6 

Y, v 
3' 

E:.-_--!.. ______ --+ X, u 

{uJ = [G]{a} = [[A] [0]] { } 
[0] [A] a 

[
1 XI YI1 [0 0 o~l [A]= 1 x 2 Y2 and [0]= 0 0 

1 x) Y3 0 0 

{a}=[G]-I{u }=![Arl [0] ]{u} 
e l[O] [Arl e 

{~} = [f(x,y)] {a} = [f(x,y)][G rl 
{u e } 

{:: } ={: ~: } = [f'(x, y)][G ]-1 
Y au/ay + fJv/fJx 

xy 

{E}=I~ ~ ~ ~ ~ ~l[G]-I{ue} = [8]{ue} 

lo 0 0 1 .0 
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where, strain-displacement matrix, 

[YD 0 Y3I 0 Y\2 

x:, J where [J] is Jacobian [8]=_1_ 0 x32 0 xI3 0 
OetJ 

x32 Y23 xI3 Y3I x2I Y\2 

XI YI 0 XI -X3 YI -Y3 0 xJ3 YI3 
and Oet J = 1 x 2 Y2 =0 x2 -X3 Y2 -Y3 0 X23 Y23 

1 X3 Y3 X3 Y3 X3 Y3 

= xJ3 Y23 - YI3 X23 

o xJ3 YJ3 

It can be seen that area of the triangle, A = ~ Oet J = (~) 0 X23 Y 23 

1 X3 Y3 

If nodes are numbered counter-clockwise, in right-handed coordinate system 
Oet J is +ve. 

Stiffness matrix of the 3-node triangular element can now be obtained from 

[KJv = f[8]T [O][8]dV = t f~B]T [O][B]dx dy 

where t = fdz is the thickness of the element and 

[8] is a function of X and Y only. 

Here, matrix' [0] corresponding to the particular deform::aion pattern of the 
component (plane stress, plane strain or axi-symmetric) is to be used. An 
explicit evaluation of the stiffness matrix is not generally feasible (except for a 
few special cases). 

This triangular element, with 3 nodes and 2 OOF per node chooses linear 
displacement functions for u and v and hence gives constant strain terms over 
the entire element as seen from [f'(x, y)] or [B] and hence is popularly known 

as 'Constant Strain Triangle (CST), element. 

5.3.1 Stiffness Matrix ?fRight Angled Triangle 

For the particular case of a right angled triangle with coordinates 1(0,0), 2(a, b) 
and 3(0, b), let u = al + a2 x + a3 y and v = a4 + as x + a6 Y represent the 
displacement field. Substituting nodal coordinates, vector of nodal 
displacements can be written as 
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Evaluating coefficients al to a6 in terms of nodal displacements, 

a l 0 0 0 0 0 u l 
a 2 0 l/a -lla 0 0 0 u 2 

a 3 -lib 0 1 I b 0 0 0 U 3 

a 4 0 0 0 I 0 0 VI 

as 0 0 0 0 1/ a -i/a v 2 

a 6 0 0 0 -lib 0 lib V3 

or (a) = (Gr'(u,) =(a)=[[A] , [0] Jru ) 
[0] . [Arl e 

{.,& } riO 0 0 
!J 

Strain, {E} = au / Oy = 0 0 0 0 0 { a} = [B] {ue} 

au/Oy+8v/8x 0 0 I 0 1 

where, [B] =(.~ ) r -~a 
b -b 0 0 

-~J 0 0 -a 0 

0 a 0 b 

a b 

[K] = f[B]T [0] [B] dv = t f f[Bf [0] [B] dx dy = tA [B]T [0] [B] 
V 0 0 

since elements of matrices [B] and [0] are not functions ofx or y 
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For a plane stress case, stress-strain relationship is given by 

[0] = E 2 V 1 
[

1 v 

(I-V) 0 0 
Let 13 = (1 - V) 

2 

Then, with element OOFs arranged in the sequence of [UI U2 U3 VI V2 V3]T 

l3a 
2 

0 

[K]= 
EtA -l3a 2 _ b 2 b2 +l3a 2 

a 2b 2 (I_v 2 ) 0 -vab vab a 2 

Symmetric 

-l3ab 0 l3ab 0 

l3ab vab - ab(v + 13) _a 2 

If the element OOFs are arranged in the sequence Of[UI VI U2 V2 U3 V3]T, 

the elements of stiffness matrix are rearranged as 

l3a 
2 

0 a 2 

[K]= 
EtA 0 -vab b 2 Symmetric 

a 2 b 2 (l-v2
) -l3ab 0 0 13 b 2 

-l3a 2 vab _ b 2 l3ab b 2 +l3a 2 

l3ab _a 2 vab -l3b 2 - ab(v + 13) a 2 +l3b 2 

5.4 CONVERGENCE CONDITIONS 

(To BE SATISFIED By THE DISPLACEMENT FUNCTION) 

While choosing the function to represent u and v displacements at any point in 

the element, care should be taken to ensure that the fol1owing conditions are satisfied. 

(i) The function should be continuous and differentiable (to obtain strains) 

within the element. This is automatically satisfied with polynomial 

functions. 

(ii) The displacement polynomial should include constant term, 

representing rigid body displacement, which any unrestrained portion of a 

component should experience when subjected to external loads. 
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(iii) The polynomial should include linear temls, which on differentiation 

give constant strain terms, Constant strain is the logical condition as the 

element size reduces to a point in the limit. 

(iv) Compatibility of displacement and its derivative~. up to the required 

order, must be satisfied across inter-element boundaries. Otherwise the 

displacement solution may result in separated or overlapped inter

element boundaries when the displacement patterns of deformed 

elements with a common boundary are plotted separately (explained in 

more detail in section 5.7). 

(v) The polynomial shall satisfy geometric isotropy (terms symmetric in 

terms of coordinate axes x, y and z), Otherwise, different users 

analysing the same component may get different results by following 

different node number sequence to define the elements (different local 

coordinate systems). 

Terms used in the polynomial, satisfying all the above conditions, are 

represented by Pascal triangle given below, for a 2-D element. 

Constant term 

Linear terms 

Quadratic terms 

Cubic telms 

I Quartic terms 
I 
I 
I 
I 

!.--Axis of symmetry 
I 
I 
I 
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Similarly, the polynomial for a 3-D element is represented by the terms of 
Pascal tetrahedron, as given below. 

Constant term 

Lmearterms 

Quadratic terms 

------4---, 2 

'" X Y 

2 " 
X Z ' .. 

2 " 
XZ " 

This can also be represented by the nodes of a hypercube, as given below. 
Here, terms with other combinations are on the invisible s!des of the cube. 

" 

, 
i-

135 
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5.5 GEOMETRIC ISOTROPY 

If all the terms of a particular order are included in the polynomial, it is called 
the complete set. If the terms are symmetric w.r.t. x and y, it is called geometric 
isotropy. 

as 
Based on the terms included in the polynomial, the function may be termed 

complete and isotropic 

complete and non-isotropic 

incomplete and isotropic 

or incomplete and non-isotropic 

As the number of terms in the polynomial depend on the number of OOF 
and the--RUmber of nodes, use of complete set of terms of a particular order may 
not be possible in all cases. But, isotropy can be maintained in all the cases and 
is preferable so that user of a general-purpose program can start with any 
particular node of his choice for defining the nodal sequences (which decide the 
local coordinate systems) of different elements of the structure. 

For each element, local coordinate system is usually defined with node 1 as 
the origin; X-axis along 1-2 and Y-axis perpendicular to X-axis in the plane of 
nodes 1-2-3. 

The displacement function u(x) = al + a2.x + a3.y of a triangular element is 
complete and isotropic while u(x) = al + a2.x + a3.y + a4.xy of a quadrilateral 
element is incomplete but isotropic. 

Higher order elements are broadly classified as -

• Serendipity elements - TheBe are the elements having no internal nodes 

Ex: 8-noded quadrilateral, 12-noded quadrilateral, etc. 

~. 

~. \ 
\ \ 
\ .--. .-- • • 

\ .--.-.-
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• Lagrange elements - These are the elements having internal nodes which 
can be condensed out at the element level before assembling. 

Ex : 9-noded quadrilateral, 16-noded quadrilateral, etc. 

~. 

~. \ 
\. . \ 
\ .---. .-- \ 

• • 
• 

• • 
\ --.-.-. 

Polynomials used for some 2-D elements (subjected to in-plane loads), 
satisfYing the convergence and isotropy conditions, are given below. 

Order of No.of Polynomial 
Element Terms included 

Displacement nodes type 

Triangle Linear 3 al + a2·X + a3·Y Complete & 

(Fig.S.2 a) Isotropic 

Triangle Quadratic 6 al + a2 x + a3 y + a..X2 + a5 xy + a" y2 Complete 

(Fig,S.2 b) & Isotropic 

Triangle Cubic 9 al + a2.X + a3.y + a..X2 + a5.xy + a".y2 + Incomplete, 

(Fig.S.2 c) a7.x2y + a..xi + a9 x2y2 Isotropic 

al + a2X + a,y + a.x2 + a5xy + a"i Incomplete 

+ a7xly + a.xy~ + ~X3 (Notj>referred) Non-Isotropic 

Triangle' Cubic IO al + a2.X + a3.y + a..x2+ a5.xy+ a".i + Complete, 

(Fig.S.2 d) a7.x3 + a..x2y + ~ xi + alO.y3 Isotropic 

Quadrilateral Linear 4 al + a2.X + a, y + a..xy Incomplete, 

(Fig.S.2 e) IsotropIc 

al + a2X + a3Y + a.x2 Incomplt:te, 

(Not preferred) Non-lsotroJllc 

Quadrilateral Quadratic 8 al + a2.X + a3.y + a..x2 + a5.xy + a,,·i + Incomplete, 

(Fig's.2 f) a7.x2y+ a •. xi Isotropic 

Quadrilateral Cubic 12 al + a2.X + a3.y + a..x2+ a5.xy+ a".y2 + Incomplete, 

(Fig.S.2 g) a7.x3+ a..x2y+ ~.xy2+ alO.y3+ all.x3y Isotropic 
+ al2.xy3 
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FIGUR E 5.2 Some 2-D elements for in-plane loads 

5.6 ASPECT RATIO 

In 2-D and 3-D elements, the displacement function is symmetric in x, y and z, 
whether it is complete or not in terms of coefficients of a particular order as 
given by Pascal triangle or Pascal tetrahedron. Hence, the shape of the finite 
element in the idealised structure should also be oriented equally to all the 
relevant axes. For this purpose, certain conditions are generally specified in the 
standard packages on the sizes and included angles for various elements. 
Aspect ratio is defined for this purpose as the ratio of the longest side to the 

A 
Angle at A < 45(\ 

b ,---I __ ------' 

a alb> 5 

A~ 
Angle at A < 60" 

Shapes of elements, not preferred 

bD 
a alb<5 

C\ 
Preferred shapes of elements 
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shortest side. It is usually limited to 5, while the included angle is usually 

limited to 45° to 135° for a triangular element and to 60° to 120° for a 

quadrilateral or 3-D element. A few 2-D elements with valid and invalid shapes 

are shown here. 

5.7 INTER-ELEMENT COMPATIBILITY 

The polynomial used to represent variation of displacement over the element 

should ensure compatibility of displacement along inter-element boundary. 

If this condition is not satisfied, inter-element boundary of two adjacent 

elements may overlap or show void on application of external loads, when 

the displacement pattern of different elements with a common boundary are 

3 

(al Unloaded elements 

4' 

(e) Loaded meompatible overlappmg 
elements 

(b) Loaded compatible clements 

(d) Loaded incompatIble elements with void 

plotted separately. The inter-element compatibility condition is satisfied when 

displacement at any point along a common edge, of all elements joining along 

that edge, is a function of displacements of nodes on that edge only. This 

concept is demonstrated here for displacement along x axis of a right angled 
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triangular element, with the two sides of lengths a and b coinciding with the 

coordinate axes. 

u = [1 x y] a2 :. u2 = I a 0 a 2 by substituting nodal coordinates 
{

a
l
} {U I

} [I 0 0j{a
l
} 

a3 u3 lOb a3 

{::H-Il/a 0 

I~Jt:} or l/a 

a3 -lib 0 

Then, 

0 

u =[1 x Y] [_III a lIa ~ Jfl[I_X/a-Y/b xla Y/b]tJ 
-lib 0 lib u3 

At R(xt,O), u = [1- XI / a x,la 0] t} [1-x,/a xI / a]{ Uj } 

U2 

or u at R(xt, 0) is a function oful and U2, displacements of the two end nodes of 

that edge only. 

Similarly, at S(Xt,YI), ~=(a~xI)or 1-(:I)-(~)=O 

Then, u~[O x,la Y,/b]tJ ~ [x,/a y,/b]{::} 

or u at S(xt, YI) is a function of U2 and U3, displacements of the two end 
nodes of that edge only. 
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Similarly, 

at T(O, Yl), u=[I-y\/b 0 y\/b1t:} = [1-y\/b Y\/bl{~:} 
or u at T(O, Yl) is a function oful and U3, displacements of the two end 

nodes of that edge only. 

The same logic holds good for v, displacement at any point of the element in 

y direction. 

To adequately represent stress concentration in some local regions, it is a 

common practice to either increase number of elements or increase the order of 

the polynomial of the displacement function. The first method ensures inter

element displacement compatibility but at a higher computational cost. The 

second method may not always ensure inter-element displacement 

compatibility. Transition elements are commonly used in such situations. These 

are covered in more detail in section 7.10 of this book. 

5.8 2-D ELEMENTS SUBJECTED TO BENDING LOADS 

Plate bending element : It is a plate element in X-Y plane subjected to 

bending load Pz and/or bending moments Mx , My. A thin plate (span> lOx 

thickness) with small deflection « thickness/lO) follows Kirchhoffs theory and 

is an extension of I-D beam element into two dimensions. It will have three 

degrees of freedom at each node, displacement normal to the plate (w) and 

rotations about the two major axes of the element represented by derivatives of 

w about x and y (ex and ey). 

For a triangular Plate bending element, normal deflection is assumed by the 

polynomial. 

w = al + a2.x + a3.y + at.x2 + a5.l + a6.x2y + a7.xy2 + as.x3 + a9.l 

Ow 2 2 
Ox =- = a 2 + 2a 4 ·x + 2a6·xy + a7·y + 3as·x ax 

Displacement function of triangular plate bending element is incomplete but 

isotropic. 
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z 
z 

x 

Plate bending element Thin shell element 

Thin plate with large deflection is characterised by large tensile or 
compressive stresses in the middle plane. The corresponding u and v 
displacements are given by 

u = -z ( :); v = -z ( ~ 1 
". ~(:l~-{ ~~ 1 
", ~(: l~-{~~ 1 
1., ~(: H~)~-2Z(:; 1 

The stress-strain matrix is given by {cr} = [D) {E} 

This is more commonly expressed in terms of moments per unit width (b= I), 
also called stress resultants, using 

{

MX } 3 [1 v 
Thus, My = - Eh 2 v 1 

12(1- v ) 0 
Mxy 0 
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Thin shell element: It is a 2-D element subjected to in-plane loads as well as 
bending loads. As in the case of a general beam, these two behaviours represent 
uncoupled degrees of freedom. It can therefore be considered as a combination 
of plane stress element and plate bending element. In the local coordinate 
system, this element will have five degrees of freedom since moment about 
normal to the plate is not included. However, if different elements are inclined 
to each other, transformation of the combined stiffuess matrix of each element 
with five degrees of freedom per node in local coordinate system results in six 
degrees of freedom per node in the global coordinate system. 

5.9 3-D ELEMENTS 

Similar to the elements described above, 3-D elements are of two types based 
on the type of function used - solid element with three translational 
displacement degrees of freedom per node without significant bending 
behaviour and thick shell element with six degrees of freedom. The 
displacement functions normally used are given below. 

For a 4-noded 3-D solid tetrahedron element 

u = al + a2.X + aJ.y + a4·z 

v = a5 + a6.x + a7.y + ag.z 

w = a9+ alO.x + all.y + al2.z 

These functions are complete and isotropic. 

4 

8 .....,---____ ...,.,7 

51'-----t----r 

3 

2 

For a 8-noded 3-D solid hexahedron element 

u = al + a2.x + aJ.y + ~.z + a5.x2 + ~.l + a7.z2 + ag.xyz 

v = ~ + alO.x + all.y + al2.z + au.x2 + al4.l + al5.i + al6.xyz 

w = al7 + alg.X + a19.y + a20.z + a21.x2 + a22.l + a23.z2 + a24.xyz 



144 FINITE ELEMENT ANALYSIS 

The function used is therefore incomplete but isotropic. 

Isotropy condition in these elements involves symmetry w.r.t. X, Y and Z 

axes. The displacement field can also be chosen by a different polynomial 

u = a, +a2.x+a3.Y+84.z+as.x2 +<If;.l +a7.z2 +ag.xyz ; ... 

Thus, there is no unique way of choosing an incomplete polynomial 

5.10 AxI-SYMMETRIC ELEMENTS 

These are special cases of 3-D components where 2-D analysis can be carried 

out for evaluating displacements and stresses, saving lot of time and effort. 

There are many components such as turbine casings, compressor casings, 

pressure vessels, cylindrical heat exchangers etc., which are 3-D components by 

the relative dimensions of the component in the three coordinate directions. 

However, each is symmetric about its axis of rotation and thus deflection and 

stress along any 2-D radial plane (imaginary section planes A, B,.. in the 

figure), will be identical. It is often more convenient to represent such 

components in cylindrical coordinate system, consisting of axial (usually 

represented by z-axis), radial (or r-axis) and hoop (or circumferential or 8) 

direction. A section through r-z plane is considered for analysis. Unlike in the 

case of plane stress or plane strain analysis of 2-D components, it need not be 

constrained in the radial direction at any point in the component to suppress 

rigid body motion. This is automatically taken care of by the closed geometry in 

the hoop direction, thus providing a natural boundary condition. 



CHAPTER 5 CONTINUUM (2-D & 3-D) ELEMENTS 

I 
/ •••••••••• 1 ••••••••••• \ 

Also, displacement in the radial direction at any point in the component by 
'dr' gives rise to a corresponding change in circumferential length by 

21t(dr) dr 
21t(r + dr) - 21£ r or 21£(dr) . It amounts to a hoop strain of --- or -. 

21£r r 
Thus the stress-strain relation is a 4 x 4 matrix relating o' r , 0'0' o'z and 'trtJ 

with Er , Eo, Ez and "f rtJ given by 

O' r 
I-v v v 0 Er 

<To E v I-v v 0 Ee 
-(I+v)(I-2v) v v I-v 0 or {O'}=[O]{E} 

O'z 1-2v 
Ez 

'tro 0 0 0 --
"fro 2 

145 
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Sometimes, components like shell nozzle junction are analysed as 
axisymmetric solids, to save time and effort, even though it is not symmetric 
about nozzle axis or shell axis. For this purpose, cylindrical shell is replaced hy 
a spherical shell of double the radius, because the larger stress component (hoop 

stress) in a sphere is half the corresponding stress of a cylinder of the same 
radius. The same is nottrue for thermal stresses and needs some moditication. 

5.11 SUMMARY 

• While 1-0 elements generally form a discrete structure, 2-0 and 
3-D elements form part of a continuum. In the 1-0 element, where 
axial dimension is very large compared to the cross section, load is 
assumed to act uniformly over the entire cross section. When one of 
the cross sectional dimensions, width, is significant compared to the 
length of the member, it is considered as a 2-D element. 

• Finite elements are classified into three categories - Simplex 
elements obtained by joining n+ 1 nodes in n-dimensional space; 
Complex elements whose displacement function consists of 
quadratic or higher order terms; Multiplex elements whose 
boundaries are parallel to the coordinate axes. 

• The function chosen to represent u and v displacements at any point 
in the 2-D element should satisfy the following conditions - The 
function should be continuous and differentiable within the 
element; should include constant term and linear terms; should 
satisfy compatibility of displacement and its derivatives, across 
inter-element boundaries and should satisfy geometric isotropy. 

• A model with less number of higher order elements (with more than 
two nodes along edges of the element) will give better results than 
more number oflower order elements and is economical in terms of 
computer memory and time. 

• 2-D Plane stress element and 3-D solid element are similar to 1-0 
truss element, whose degrees of freedom do not include slopes 
while 2-D Plate bending element and 3-D thick shell element are 
similar to 1-0 beam element, whose degrees of freedom include 
slopes. 

• Plane stress element applies to a thin plate with in-plane loads, 
having zero stress in the normal direction, while plane strain 
element is a thin slice of a large 3-D solid, where load acts in the 
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plane of slices and analysis of one slice represents solution of the 
3-D solid, and has zero strain in the normal direction. 

• Axisymmetric element is also a 2-D model of a 3-D solid with 
axisymmetric geometry, loads and boundary conditions. It differs 
from plane strain element, in having finite strain normal to the 
plane of analysis as a function of radial displacement. 

• Thin shell element is a superposition of plane stress element and 
plate bending element, representing uncoupled degrees of freedom. 

OBJECTIVE QUESTIONS 

I. Complete polynomial is _ important, compared to symmetry of 
displacement polynomial w.r.t. coordinate directions 

(a) equally (b) more (c) less (d) unrelated 

2. A triangular element with cubic displacement function requires __ nodes 
to represent the complete and symmetric polynomial 

(a) 3 (b) 6 (c) 9 (d) 10 

3. A triangular element with quadratic displacement function requires __ 
nodes to represent the complete polynomial 

(a) 3 (b) 6 (c) 9 (d) 10 

4. A triangular 9-noded element will usually have __ cubic displacement 
function 

(a) symmetric & complete 

(c) unsymmetric & complete 

(b) symmetric & incomplete 

(d) un symmetric & incomplete 

5. A constant term in the displacement function ensures 

(a) rigid body mode (b) constant strain mode 

(c) zero stress (d) zero deformation 

6. Number of terms in the displacement function in relation to the number of 
nodes in that element is 

(a) more (b) equal (c) less (d) unrelated 

7. A linear term in the displacement function ensures 

(a) rigid body mode (b) constant strain mode 

(c) strain varying in the element (d) stress varying in the element 

8. All stiffness coefficients of a plate bending element have _ units 

(a) same (b) different (c) any set of (d) depend on other data 
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9. All stiffness coefficients of an axisymmetric element have _ units 

(a) same (b) different (c) any set of (d) depend on other data 

10. Displacement method can NOT be used with __ boundary conditions 

(a) pressure (b) temperature(c) stress (d) displacement 

11. A triangular plane stress element has _ D.O.F 

(a) 6 (b) 9 (c) 12 (d) 15 

12. A thin shell element has _ no. of DOF, compared to a plate bending 
element 

(a) same (b) more (c) less (d) unrelated 

13. A plane stress element has _ no. of DOF, compared to a plate bending 
element 

(a) same (b) more (c) less (d) unrelated 

14. An axisymmetric element has _ no. of DOF, compared to a plate bending 
element 

(a) same (b) more (c) less (d) unrelated 

15. A structural thin shell triangular element has _ DOF 

(a) 3 (b) 6 (c) 9 (d) 18 

16. A triangular plane strain element has _ DOF 

(a) 3 (b) 6 (c) 9 (d) 15 

17. Number of displacement polynomials used for an element depends on 

(a) No.ofnodes/element (b) No. of DOF/node 

(c) No. of DqF/element (d) type of element 

18. For a plate bending element, number of displacement polynomials and 
number of D.O. Fino de are 

(a) 1,2 (b) 1,3 (c) 2,3 (d) 2,4 

19. Accuracy of solution' in a 2-D component depends on 

(a) included angle of elements (b) size of the component 

(c) no. of DOFI node (d) type of load 

20. Displacement of any point on a side is related to displacements of nodes on 
that side only, ensures 

(a) equilibrium (b) compatibility 

(c) energy balance (d) continuity along inter-element boundary 
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21. Continuum analysis covers 

(a) all 2-D trusses & frames 

(c) all 2-D and 3-D plates, solids 

(b) all 3-D trusses & frames 

(d) only 3-D solids 

22. Optimum number of elements in finite element model depends on 
assessment of_ distribution in the component 

(a) displacement (b) stress (c) strain (d) potential energy 

23. Displacement function which matches function value at the specified nodes 
is classified as 

(a) Lagrange interpolation function (b) Serendipity function 

(c) Hermite interpolation function (d) Pascal function 

24. Displacement function which matches function value as well as its 
derivatives (slopes) at the specified nodes is classified as 

(a) Lagrange interpolation function (b) Serendipity function 

(c) Hermite interpolation function (d) Pascal function 

25. Continuum analysis includes 

(a) trusses (b) beams (c) plates (d) plates & solids 

26. Continuum elements and discrete members can 
model for analysis 

be included in a single 

(a) always true (b) sometimes true 

(c) never true (d) depends on matching DOF 

27. Continuum elements in different analysis may vary in 

(a) size (b) shape (c) size or shape (d) size & shape 

28. Element formed with edges parallel to coordinate axes is called 

(a) simplex element (b) complex element 

(c) multiplex element (d) compound element 

29. An element with no internal nodes is classified as 

(a) serendipity element 

(c) Hermite element 

(b) Lagrange element 

(d) Laplace element 

30. An element with internal nodes is classified as 

(a) serendipity element 

(c) Hermite element 

(b) Lagrange element 

(d) Laplace element 



:1.50 FINITE ELEMENT ANAL YSIS 

31. A concrete pedestal is represented by 

(a) plane stress elements 

(c) 3-D solid elements 

(b) plane strain elements 
I 

(d) 3-D shell elements 

32. Combination of plane stress element behaviour and plate bending behaviour 
forms 

(a) 3-D solid element 

(c) Thin shell element 

(b) 3-D shell element 

(d) thick shell element 

33. A 3-D dam is usually modeled with 

(a) 2-D plane stress elements 

(c) 3-D solid elements 

(b) 2-D plane strain elements 

(d) 3-D shell elements 

34. Element formed by joining n+ 1 nodes in n-dimensional space is cal!ed 

(a) simplex element 

(c) multiplex element 

(b) complex element 

(d) compound element 

35. Element fonned with quadratic or higher order displacement polynomial 

is a 

(a) simplex element 

(c) multiplex element 

(b) complex element 

(d) compound element 

36. Elements connecting lower order elements and higher order elements in a 
mesh are called 

(a) transition elements 

(c) iso-parametric elements 

(b) sub-parametric elements 

(d) super-parametric elements 

37. Elements having mid-side nodes only on some sides are called 

(a) transition elements 

(c) iso-parametric elements 

(b) sub-parametric elements 

(d) super-parametric elements 

38. Stress-strain matrix for plane stress element, if strain is represented by SiJ 

and stress is represented by stu' is obtained from the condition 

(a) Szz= 0 (b) Szx= 0 (c) stzx= 0 (d) slzz= 0 

39. Stress-strain matrix for plane strain element, if strain is represented by SiJ' is 
obtained from the condition 

(a) Szz= 0 (d) slzz= 0 
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40. Stress-strain matrix for axisymmetric element is of order 

(a) 3 x 3 (b) 4 x 4 (c) 6 x 6 (d) 9 x 9 

41. Stress-strain matrix for plate bending element is of order 

(a) 3 x 3 (b) 4 x 4 (c) 6 x 6 (d) 9 x 9 

42. Elasticity matrix for _ behaviour is similar to 3-D elasticity matrix 

(a) plane stress (b) plane strain 

(C) plate bending (d) axisymmetric 

43. Plane stress element is an extension of 

(a) truss element 

(c) pipe element 

(b) beam element 

(d) spring element 

44. Plate bending element is an extension of 

(a) truss element (b) beam element 

(c) pipe element (d) spring element 

45. Wrong sequencing of nodal connectivity in 2-D & 3-D problems leads to 

(a) +ve Jacobian (b) zero Jacobian 

(c) -ve Jacobian (d) No relation with Jacobian 

46. Axisymmetric structures are usually modeled in 

(a) element local coordinates (b) global cartesian coordinates 

(c) global cylindrical coordinates (d) user specified system 

47. A plate of 1 em thickness with in-plane loads is modeled by 

(a). plane stress element 

(c) plate bending element 

(b) plane strain element 

(d) anyone of them 

48. Actual thickness of plane strain element is 

(a) very small (b) very large 

(c) any specified value (d) assumed by software 

49. Order of stifthess matrix for a plane stress model with 20 nodes is 

(a) 10 (b) 20 • (c) 40 (d) 60 

50. Order of stifthess matrix for an axisymmetric model with 20 nodes is 

(a) 10 (b) 20 (c) 40 (d) 60 

51. Number of stress components per node calculated for a plane stress 
quadrilateral element is 

(a) 2 (b) 3 (c) 4 (d) 5 
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52. Number of stress components per node calculated for a triangular 
axisymmetric element is 

(a) 2 (b) 3 (c) 4 (d) 5 

53. A general plate element is a superposition of elements 

(a) plane stress & plane strain (b) plane strain & plate bending 

(c) plane stress & plate bending (d) plate bending only 

54. An element with in-plane loads having 3 nodes along each side is a 

(a) constant strain element 

(c) quadratic strain element 

SOLVED PROBLEMS 

(b) linear strain element 

(d) constant displacement method 

------------------------------------------------
Example 5.1 

Calculate displacements and stress in a triangular plate, fixed along one edge 
and subjected to concentrated load at its free end. Assume E = 70,000 MPa, 
t = 10 mm and v = 0.3. 

Solution 

lOON 
Y,v 2 

T SON 

20mrn 

1 
If the element OOFs are arranged in the sequence of[ul VI U2 V2 U3 v3f, 
the stiffuess matrix from 5.3.1 is 

13 a 2 

0 a 2 

[K]= 
EtA 0 -vab b 2 Symmetric 

a 2b 2(1_v 2
) -l3ab 0 0 13 b 2 

-l3a2 vab _b 2 l3ab b2 + l3a 2 

l3ab _a 2 vab -13 b 2 - ab(v + 13) a 2 +l3b 2 



CHAPTER 5 CONTINUUM (2-D & 3-D) ELEMENTS 153 

Substituting the given dimensions and material properties, 

315 

K _ 70000 x lDXeO
; 20 1 0 900 

0 -180 400 Symmetric 

[ ] - 302 X 20 2 x (1- 0.3 2 ) -210 0 0 140 

-315 180 -400 210 715 

210 -900 180 -140 -390 1040 

After applying boundary conditions, UI = VI = U3 = V3 = 0, these equations 

reduce to 

- = = 641 026 {PXJ} {50} [400 0] {u 2
} 

P Y2 - 100 . 0 140 V 2 

Therefore, U2 =- 0.000195 mm and V2 =-0.001114 mm 

Note : The given thick plate, trom university question paper, should not be 

analysed as a 2-D problem. It can not be solved as a 3-D problem manually. 

Example 5.2 

Compute the plane strain stiffness matrix in terms of the ratio r = alb for the 

rectangular element of sides a and b, using v = 0.2, r = I and displacement 

model 

Solution 

By substituting coordinates of the four comer nodes in the displacement model, 

With origin (0,0) at node I, 

ul 1 0 0 0 0 0 0 0 a l 

u2 a 0 0 0 0 0 0 a2 

u, a b ab 0 0 0 0 a3 

0 b 0 0 0 0 0 [[A] [0]] u4 a4 or {uJ= . [A] {a} 
VI 0 0 0 0 0 0 0 a5 

[0] 

v2 0 0 0 0 a 0 0 a6 

V3 0 0 0 0 a b ab a7 

v4 0 0 0 0 0 b 0 as 
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y, v 

4 3 

2 '------=---+x, u 

For the particular case of r = ~ = 1 , evaluating coefficients al to 
b 

ag in tenns 

of nodal displacements, 
a l 1 0 0 0 0 0 0 0 ul 
a2 -lla lIa 0 0 0 0 0 0 u2 

a3 -lla 0 0 II a 0 0 0 0 u3 

a4 lIa 2 -l/a2 l/a 2 _\/a2 0 0 0 0 u4 

a5 0 0 0 0 0 0 0 VI 

a6 0 0 0 0 -\/a \/a 0 0 v2 

a7 0 0 0 0 -l/a 0 0 \/a V3 

ag 0 0 0 0 l/a 2 -lIa2 \ I a2 -l/a2 v4 

or a _[rAr' 
{ } - [0] 

rO] ] 
[Arl {u e } 

r& } [0 
0 y 0 0 0 

~ Jra} = [BHu,} Strain, {E} = av lOy = 0 0 0 0 0 0 1 

8u/Oy+0y/8x 0 0 1 x 0 I 0 

where, 

[B]=ct~: 
-(y-a) y -y 0 0 

0 0 0 x-a -x 

-x x -(x-a) y-a -(y-a) 

For a plane strain case, stress-strain relationship is given by 

[D]= __ E_-ll~V 
(1 + v)(1- 2v) 0 

v 

I-v 

o 

0 

-<x
O

-a)1 x 

y -y 
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l
8 

-~ 2 
7.2 0 

2 01 8 0 for v = 0.2 

o 3 

a b 

[K] = f[B]T [0] [B] dv = t f f[B]T [0] [B] dx dy 
v 0 0 

a b 

= f f[B]T [0] [B] dx dy since t/= 1 for plane strain elements 
o 0 

44 
-26 44 Symmetric 

-22 4 44 

E 4 -22 -4 44 

86.4 15 3 -15 -3 44 

-3 -15 3 15 4 44 
-15 -3 -3 3 -22 -26 44 

3 15 15 -15 -4 -22 4 44 

when written corresponding to the displacement vector [UI VI U2 V2 U3 V3 U4 V4t 

Example 5.3 

Compute the plane strain stiffness matrix of a square, treating this as an 
assembly of two triangular elements with the displacement field in these 
elements expressed as u = al + a2 x + a3 Y and v = ~ + a5 x + ~ y . 
Assume v = 0.2 

Solution 

Let the square of side 'a' be represented by two triangular elements identified 
by nodes 1, 2, 3 and 1, 3, 4 respectively. Choosing node 1 as the origin of the 
X-Y coordinate system, 

y,v 

4..-----."..3 

w:;... ____ ~--+ X, u 
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For element-I, 

{~+r: : m::J 
Then 

{
a
l} rIO 0 J{UI} a 2 = -I/a I/a 0 U 2 

a 3 1 -I/a I/a u3 

Strain, {E}={:;: }=r~ 0 

ou/8y+8v/& Lo 0 

000 

000 

o 1 

where, [R] ~mr ~I 
100 
000 

-I 1 -I 

o OJ -I 1 

1 0 

For a plane strain case, stress-strain relationship is given by 

[O]= __ E __ rl~V I~V ~. J 
(I+V)(1-2V)L 0 0 (I-2v)/2 

=~r~ ~ ~J for V = 0.2 7.2 
003 

a b 

[K] == f[8f [0] [8] dv = t f f[8f [0] [8] dx dy 
v o 0 

a b 

= f f[8]T [0] [8] dx dy since t = 1 for plane strain elements 
o 0 

8 

0 4 Symmetric 

E -2 4 6 
= 

14.4 2 -4 -6 12 
0 -4 -4 4 4 

-2 0 2 -8 0 8 
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when written corresponding to the displacement vector [UI VI U2 V2 U) V)]T 

For element-2, 

3 

0 8 Symmetric 

[K]- E 
0 -2 8 

14.4 -3 0 0 3 

-- 3 2 -8 3 12 

3 -8 2 -3 -5 11 

when written corresponding to the displacement vector [UI VI U3 V) U4 V4]T 

The stiffness matrix of the square plate is obtained by adding relevant 

coefficients of the stiffness matrices of elements 1 and 2, as 

3+8 

0+0 8+4 

-2 4 6 Symmetric 

[K]- E 2 -4 -6 12 

14.4 0+0 -2-4 -4 4 8+4 

-3-2 0+0 2 -8 0+0 3+8 

-3 2 0 0 -8 3 12 

3 -8 0 0 2 -3 -5 11 

corresponding to the displacement vector [UI VI U2 V2 U) v) U4 V4]T 
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Note: 

1. The stiffness matrix obtained for the combination of two triangular 

elements in Ex. 5.3 is different from the one obtained for the square 

element in Ex. 5.2. 

2. In the first case, node 2 and node 4 are not linked and hence terms k37, 

k38, ~7' ~8, k73, k74' k83 and k84 are equal to zero. 

3. Even other terms are different, indicating that the results obtainell/or a 
given problem will depend on the model used for analysis and differ 
marginally. 



CHAPTER 6 

HIGHER ORDER AND 
ISOPARAMETRIC 

ELEMENTS 

8.1 HIGHER ORDER ELEMENTS 

When geometry is modeled with CST elements, large number of small-size 
elements need to be used, in order to accommodate variation of strains over the 
entire geometry. In view of the constraints on computer memory and time for 
solving large size problems, an alternative method of using a small number of 
higher order (refined) elements can also be considered. In these elements, a 
higher order polynomial is used to include variation of strain over the element 
by choosing additional nodes. 

In most cases, axially loaded spars or truss elements have uniform cross 
section and hence stress/strain in the element is constant along the length of the 
member. A few special cases may involve stress/strain varying along the length 
of a truss element, such as a vertical column with distributed self weight. For 
such applications, a 3-noded truss element is used. However, in the case of 
beam elements, elementary beam equation predicts deflection of a beam varying 
parabolically along the length. Basic beam element in FEM caters to this 
variation. Higher order beam element 'is not of any practical use and is, 
therefore, not discussed further. 

(a) 3-noded truss element: This element has 3 nodes including one extm 

node in the middle of the element. 2nd order displacement function is 
used. Stiffness hlatrix for this element is derived here for an 

understanding ofthe subject. 
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_____ __ -+_ x 

k P, U 

Substituting the values of x for the two end points and middle point of the 
truss element, (x = ° at node i, x = L at node j and x = L/2 at node k), nodal 
displacement vector is written as 

{~:}=[: ~ ~ ]{:~} or {Ue}=[G] {a} 
Uk I Ll2 L2/4 a 3 . 

Solving for the coefficients a and substituting in the earlier equation, 

u(x) = [f(x)]T [G]I {ue } 

=[1 X x
2
] [_3

1

/L -I~L 4~L 1{~:} =[N]T {Ue} 
2 I L2 2 I L 2 - 4 I L! U l 

Strain, E = du = [f '(x)] T [Gr1 {ue} = [ 8] {ue } 
dx 

where, [8] = [0. 1 2x] [-;/L _lOlL 4~L j 
2/L2 2/L2 -4/L2 

= (~2 ) [(-3L + 4x) (-L + 4x) (4L -8x)] 

and {5E} = [8] {5ue} ; {5E}T = {5Ue}T[8]1' 

Stress, {a} = [D] {E} = E {E} = E [8] fUel 

:. {Pc} = [K6'] fUel 

where, [Ke]:::: J[8]T [D][8] dv:::: JJJ8]T E [8] dx dy dz 
v 

= AE J[8]T [B] dx 
L 

since [B] is independent ofy and z and JJdY dz = A 
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[ 
7 1 -S] 

= AE 1 7-S 
3L -S -S 16 

A higher order truss element, which accounts for variable stress/strain, has 
very few applications. Some of them are shown here. 

Example 6.1 

Calculate the displacement at the free end of a 50cm long tapered bar of area of 
cross section 1000 mm2 at its fixed end and 600 mm2 at the free end, subjected 
to an axial tensile load of 1kN at the free end. Assume E = 200GPa. 

I---+P 

~---L---+ 

---+~X,U 

Solution 

In order to explain the advantage of a higher order element, the problem is 
solved first by using basic truss element and then by using higher order element. 

(a) The bar is identified by two 2-noded elements and mean area of cross 
section is considered for both elements. 

At mid':point of the bar (node 2), 

A = (1000 + 600) = SOOmm2 
2 

For element 1, connecting nodes 1 and 2, 

A - (l 000 + SOO) - 900 2 - 9 2 
1- - mm - cm 

2 

Stiffness matrix for element-l is, 

K = AIE[ 1 -l]=(E)[ 9 -9] 
[]I L - 1 1 L - 9 9 
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For element 2, connecting nodes 2 and 3, 

A - (800 + 600) - 700 2 - 7 2 
J - - mm - cm 
- 2 

Stiffness matrix for element-I is, 

A2E [ I -I] E [ 7 -77] 
.[Kh =T -I I = L -7 

Assembled stiffness matrix is then obtained as 

r 
9 -9 0 1 

[K]=~ -9 9+7 -7 

o -7 7 

Applying boundary condition UI = 0, reduced stiffness matrix is obtained as 

Solving these two simultaneous equations, we get 

{~:}= Dlet[~ I:]{IO~O} 
E 63E 

where, Det = - (7 x 16 - 7 x 7) = -
L L 

", ~ (¥) ~II{~) 
and ", ~ 1(;i~O ~25{~) 
Corresponding stresses are 

E(u - u ) 2 
0"1 = 2 1 = III - 0 = III N/cm constant along eJement-I 

L 

E(u - u ) 2 
and 0"2 = 3 2 = 254 - 111 = 143 N/cm constant along element-2 

L 
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(b)The bar is modeled by one 3-noded element with uniform area of cross 
section (mean of max and min areas). Thus, with A2 = 800 mm2, element 
stiffness matrix is derived as 

[K]=( ~~E) 1 7 -8 u3 
[

7 1 -8j{U1
} 

-8 -8 16 u2 

1[:------, --::":-J----P 
---------

Since the chosen model has only one element, assembled stiffness matrix 
is also the same. Therefore, 

Note: Care should be taken while numbering the load and displacement 
components, since the 3 rows of the stiffness matrix correspond to the 
end nodes at x = 0, x = L and the mid point (at x = Ll2) respectively. 

Applying the boundary condition, UI = 0, the above equations reduce to 

{P3} = {1000} = A2E [ 7 
P2 0 3L-8 

Solving these equations, we get 

{:} ~t ['86 ~]{'~O} 
where, Det= A2E (16 x 7-8 x 8)= 128E 

3L L 

Therefore, ", ~ (~~ ~62.5(~l 
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and 
U, = l(~) =125(~1 

Stress in the bar is given by 

cr = E [B] {ue} = E (~2 ) [(-3L + 4x) (-L + 4x) (4L - 8x)] 

{u
uu:

l

} 

= E (~2 ) [(-3L + 4x) UI + (-L + 4x) U3 + (4L - 8x) U2] 

=E (~2) [(-3L+4x).O+(-L+4x).{12S LIE) + (4L-8x).(62.S LIE)] 

= (~) [(-12SL + SOOx) + (2S0L - SOOx)] 

= (~) (12SL) = 12SN/cm2 

Since a single element model with constant area of cross section is used, 
stress along the element remains constant and is not realistic. 

(c) The bar is modeled by one 3-noded element with area of cross section 
varying along the length of the bar. The element stiffness matrix is obtained 
from 

[Ke] = J[B]T[D][B] dv = J[Bf E [B] A(x) dx = E J[B]T[B] A(x)dx 
v L L 

where [B]= (~2 ) [(-3L+4x) (-L+4x) (4L-8x)] as derived earlier. 

On integration of the above with A(x) = Al - (AI - A3).xlL = a - b x, 

where, a = Al and b = (AI - A3)/L, we get 

[ 

ge - 24Lx + 16x2 

[K]= JE(aUbX) 3e-16Lx+16x2 

-12e +40Lx-32x2 

r
l4a-3bL 2a-bL 

= ~ 2a - b L 14a - 11 b L 
6L 

-16a + 4b L - 16a + 12b L 

3L2 -16Lx + 16x2 

L2 -8Lx + 16x2 

-4L2 +24Lx-32x2 

-16a+4b Ll 
-16a+ 12b L 

32a-16b L 

-12L2 +40LX-32X
2j 

- 4e + 24Lx - 32x2 dx 

16e -64Lx+64x2 
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-12A, - 4A

3J 

r 128 16 -144

J 

E 
- 4A, -12A3 = - 16 96 -112 

16A1 + 16A3 6L -144 -112 256 

Since the chosen model has only one element, assembled stiffness matrix 
is also the same. Therefore, 

f---.P 

Note: Care should be taken while numbering the load and displacement 
components, since the 3 rows of the stiffness matrii\. correspond to the 
end nodes at x = 0, x = L and the mid point (at x = Ll2) respectively. 

Applying the boundary condition, u, = 0, the above equations reduce to 

{P3} = {IOOO} = 8E [ 6 
P2 0 3L-7 

Solving these equations, we get 

{
u3

} = _1 [16 7] {IOOO} 
u 2 Det 7 6 0 

where, Det = (~~) (6 J( 16 - 7 x 7):: 125 (~) 

Therefore, 
7 x 1000 56L 

u
2 

= (125~) =T 

and 
1 6 x 1000 128L 

u3 = =--

(125~) E 
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Stress in the bar is given by 

a ~ E [B]{u.} ~ E(~r [(-3L+ 4x) (-L + 4x) (4L- 8x)] tJ 
=E (~2) (-3L+4x)uI +(-L +4x) U3 +(4L-8x) U2J 

=E(~2 )[(-3L+4X).0+(-L+4X).(12;L )+(4L_8X).(S:L)] 

= (~) [(-128L + S12x) + (224L- 448x)] = C~} (6L + 4x) 

Stress at node 1, for x = 0, is 0"1 = (1~) (6 L + 4 x 0) = 96 N/cm2 

Stress at node 2, for x = ~ ,is 0"2 = (1~) (6L + 4 x ~) = 128 N/cm2 

Stress at node 3, for x = L, is 0"3 = (~) (6 L + 4 x L) = 160 N/cm2 

Analysis of results 

All the three models have 3-nodes, but gave different solutions. Exact solution 
depends on how closely the assumed displacement field or stress distribution 
matches with the actual displacement field. In this example, it is clear from 
basic equilibrium condition that stress is linearly increasing from PI Al at node-l 
to P/A3 at node-3 and hence, displacement must increase in a parabolic form. 
The results are tabulated below. 

Model Displacements at Stresses (N/mm' at 

Node-2 Node-3 Node-l Node-2 Node-3 

Two2-noded III UE 254 LIE III lll1l43 143 

Ave 127 

One 3-noded, Constant area 62.5 LIE 125 LIE 125 125 125 

One 3-noded, varying area 56 LIE 128UE 96 128 160 

Exact P/A1= 100 P/A2=125 P/A,=167 
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(i) The I sl model assumes linear displacement field and hence constant 
stress over each of the two elements. At the common node between 
elements, stress has a step function and the average value can be 
taken to represent stress at that node. Results can be improved by 
taking more such elements in the model. 

(ii) The 2nd model uses a single 3-noded element, assuming constant 
(mean) area of cross section along the element. Hence, even though 
parabolic displacement is considered, linear displacement field and 
constant stress are obtained. 

(iii) The 3rd model consisting of a single 3-noded element, whose stiffness 
matrix is derived for varying cross section area along the element, 
gives parabolic displacement and linear stress representing the true 
situation. Hence, this model gives best results. 

(b) Higher order Continuum elements 

Higher order elements are more commonly used for analysing 2-D and 3-D 
structures. Linear strain triangle (LST) will have six unknown coefficients 
to include all terms upto second order, as shown in Pascal's triangle. For 
evaluation of these six coefficients, six nodal values are required in each 
element. Thus, the 6-noded element is formed by including midpoints of the 
three sides as the additional nodes. The functions for u and v displacements 
are 

u(x) = a) + a2.x + a3.y + a4.x2 + a5. xy + ~.I ' 
and v(x) = a7 + ag.x + a9.y + alO.x2 + all. xy + a\2. y2 

The function for LST element, as in the case of CST element, IS also 
complete and isotropic. 

.~ / . . ~ / _. .----_.-
6-noded CST element 

.", / . 
I· ~. . . "" / .-. . -----
lO-noded QST elemenl 

Quadratic strain triangle (QST) will have ten unknown coefficients to include 
all terms upto third order, as shown in Pascal's triangle. For evaluation of these 
ten coefficients, ten nodal values are required in each element. Thus, the 10-
noded element is formed with 6 additional mid-side nodes and I internal node. 
The functions for u and v displacements (complete and isotropic) are 

u(x) = al + a2.x + a3.y + a4.x2 + a5. xy + ~.I + a7.x3 + ag.x2y + ~.xy2 + alO.y3 

1.67 
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and 

VeX) = all + al2.x + al3.y + a14.x2 + a15. xy + al6.l + al7.x3 + als.x2y + al9.xl 
+ a2o·i 

Similarly, the displacement functions for a 10-noded 3-D solid tetrahedron 
element with additional mid side nodes along its 6 sides (complete and isotropic 
function) are 

j'\\. . . \ 
~-.-.-.\'-.-~ 
~ . . ~./ 

IO-noded tetrahedron clement 20-noded hexahedron element 

2 2 2 U = al + a2.x + a3.y + ~.Z + a5.x + ~.y + a7.Z + as.xy + a9.yz + alO.zx 

V = all + al2.x + al3'y + al4.z + a15.x2 + al6.l + a17.z2 + alS.xy + al9.yz + a20·zx 

w = a21 + a22.x + a23.y + a24'z + a25.x2 + a26.l + a27.z2 + a2S·XY + a29·yz + a30.zx 

and the displacement functions for a 20-noded 3-D solid hexahedron element 
with additional mid side nodes along its 12 sides (incomplete but isotropic) are 

2 2 2 U = a1 + a2.X + a3.y + ~.Z + a5.X + a6.y + a7.z + as.xy 
+ ~.yz + alO.zx + all.x3 + al2.x2y + a13.xl + a14.y3 + al5.y2z + al6.yr 
322 + al7.z + alS.x Z + a19'XZ + a20.xyz 

2 2 2 V = a21 + a22X + a23.y + a24.z + a2S·x + a26.y + a27.z + a2S·xy 
3 2 2 3 2 2 + a29.yz + a30·ZX + a31.x + a32.x Y + a33.xy + a34·y + a3S'y z + a36·yz 

3 2 2 + a37.z + a3S.x z + a39.xz + ~o.xyz 
W = ~I + a42·x + a43.y + ~4'Z + a4S.x2 + a46.l + a47.r + ~s·xy 

3 2 2 3 2 2 + ~9·YZ + aSO·zx + aSI.x + aS2.x Y + aS3.xy + aS4.y + aSS.y Z + aS6·yz 
_3 2 2 + aS7.z + aSS'x z + a59.XZ + ~o.xyz 

Note: Whenever possible, complete and isotropic displacement polynomial is 
used. If, however, it is not possible, preference is given to isotropy rather than 
completeness of terms of a particular order. In the above cases of higher order 
elements with incomplete polynomials, there is no unique combination of the 
terms and many other combinations of terms in the selected polynomial are 
possible. Different software may thus use different polynomials. 
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6.2 ISOPARAMETRIC ELEMENTS 

The derivation of stiffness matrix by the method described so far involves 

integration of the strain energy over the surface or volume. For straight 

boundaries, this integration can be carried out by numerical techniques. Higher 

order elements are developed with better displacement functions so that 

accurate results can 'be obtained with lesser number of elements. Inherent 

disadvantage with these elements is that as the size of the element increases, 

accuracy of boundary representation reduces since edges of element boundary 

are always assumed as straight lines. Also, as the size of the polynomial 

increases, inversion of G matrix, linking nodal displacements to the coefficients 

of the polynomial, takes more time. 

(a) Unrefined elements 
of simple shapes 

(b) Refined elements 
of simple shapes 

(c) Refined elements 
of complicated shapes 

FIGURE 6.1 Representation of curved boundaries 

A need was therefore felt to improve the method, in order to idealise the 

given structure with curved boundaries more accurately.. In this method, element 

geometry as well as displacements are interpolated over the element using 

shape functions or interpolation functions Ni in terms of natural or 
intrinsic or non-dimensional coordinates. 

Two types of shape functions are commonly used. 

• Lagrange interpolation function, which matches the function value 

(displacement) at specified points or nodes 

• Hermite interpolation function, which matches function value 
(displacement) as well as its derivatives (slopes) at the specified nodes. 
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Curvilinear orthogonal coordinates ~, " and l;, whose magnitudes vary from 

-1 to + 1 in any element, are used in place of cartesian coordinates x, y and L or 

cylindrical coordinates R, e and Z. The shape functions are then defined in 

terms of the natural coordinates, which link displacement at any point in the 

element to the nodal displacements thus avoiding the need for inversion of G 

matrix. It is obvious that there will be as many shape functions as the number of 

nodes in the element. Each shape function will have a value equal to unity at 

one node and a value equal to zero at all other nodes 

Three types of elements are possible. 

• If a higher order function is used to represent displacement and a lower 

order function is used to represent geometry, it is called a sub

parametric element. 

• If a lower order function is used to represent displacement and a higher 

order function is used to represent geometry, it is called a super

parametric element. 

• If functions of same order are used to represent displacement as well as 

geometry, then the element is called an iso-parametric element. 

Of these, iso-parametric elements are most commonly used. 

6.3 STIFFNESS MATRICES OF SOME ISO-PARAMETRIC ELEMENTS 

(a)I-D linear interpolation for a truss element 

Let the non-dimensional coordinate for the 1-0 element be defined by 

~= 2(x-x\)_1 
(x 2 -x\) 

, 
so that at node 1, x = x\ and ~ = - 1 while at node 2, x = X2 and ~ = 1 

Then, the shape functions N\ and N2 are defined in terms of~, as shown in 

Fig.6.2, by 

N\(~)= (l;~); N2(~)= (l~~) 

It can be seen that the shape function N\ = 1 for x = x\ and ~ = - 1 at node 1 

and N\ = 0 for x = X2 and ~ = + I at node 2, while N2 = 0 at node 1 and 

N2 = 1 at node 2. 
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Then, cartesian coordinate 'x' and axial displacement 'u' at any point on the 

element are given by 

x = N I XI + N2 X2 = [N] {x} 

and u = NI UI + N2 U2 = [N] {q} 

N2i~ 

~ JI. 
~=-I ~=o ~=+I ~=-I ~=O ~=+I ~ 

FIGURE 6.2 Shape functions of a 2-noded truss element (Case-i) 

The strain E = du can now be expressed, using chain rule of differentiation, as 
dx 

E= du d~ =[dN I U + dN 2 u ]d~ 
d~ dx d~ I d~ 2 dx 

=[-UI+~] 2 =-UI +u 2 =[BHq} 
2 2 (X2 - XI) L 

where, [8] = [-L
1 ~] and L = X2 - Xl 

Then, 

This stiffness matrix is identical to the one obtained by polynomial method 

described earlier. 

Alternative coordinates - There is no restriction on the choice of the origin of 

local coordinate system. For example, if the origin is taken at the left end of the 

truss element, as shown in Fig. 6.3, then the non-dimensional coordinate ~ is 

given by 

~ = (x - XI) / (X2 - XI) 

At node I, x = XI and ~ = 0 while at node 2, x = X2 and ~ = 1 

The shape functions are now defined by NI(~) = I-~ ; N2(~) = ~ 

which give the values NI = 1 for ~ = 0 at node 1 and NI = 0 for ~ = 1 at node 2 

while N2 = 0 at node 1 and N2 = 1 at node 2. 
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The Cartesian coordinate x and displacement u are again defined by 

1;=0 1;=+1 

jN2 ~ 

~ iI. 
1;=0 1;=+1 I; 

FIGURE 6.3 Shape functions of a 2-noded truss element (Case-2) 

_ du d~ _(_ ) 1 _ -lI) +u 2 -[8]{ } 
E - - lI) + u 2 . - - q 

d~ dx x 2 - Xl L 

where, [8]= (~) [-1 1]; L=Xl-XI 

[K,] ~ fB)'[D][B]dV ~ 1 [BY E [B]A dx ~ ALE [ ~ 1 -11] 

This stiffness matrix is also identical to the one obtained by polynomial 

method described earlier. 

(b)l-D Quadratic interpolation for a truss element 

The non-dimensional coordinate, with mid-point of the element (node 3) as 

h 
.. . . b): 2( x - X 3) 

t e onglO, IS gIven y ~ = ----'-----"-'--
(X2 -x) 

so that with X2 - Xl = L, Xl - X3 = - Ll2 and X2 - X3 = Ll2 the non

dimensional coordinates at the three nodes are ~) = -1; ~2 = 1; ~3 = 0 

Then, 
2 

L 

Corresponding shape functions N], N2 and N3 are given by 
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They are graphically represented in Fig. 6.4. 

S=-l ~=O S=+l S S=-l S=O 

FIG U R E 6.4 Shape functions of a 3-noded truss element 

The local Cartesian coordinate x and the displacement u are then given by 

x=N 1 x\+N2X2+N3X3=[N] {x} 

U = N\ UI + N2 U2 + N3 U3 = [N] {q} 

Strain, expanded by the chain rule of differentiation, is given by 

E = du dS = [dN \ u + dN 2 U + dN 3 U ] dS 
dS dx dS \ ds 2 ds 3 dx 

= ~ [ _ (1- ~S)UI + (1 + ~S)U2 _ 2SU3] = [B] {q} 

where, [B]=~[ (1- 2S) (1 + 2S) _ 2S] 
L 2 2 

L l7 1 
[Ke] = fiBY [O][B]dV = fA [BY E [B]dx = ~~ 1 7 

v 0 -8 ":'8 

-8] -8 
16 

This stiffness matrix is identical to the matrix obtained earlier for the 3-

noded truss element. 

(c) I-D interpolation for a beam element 

Shape functions for the beam elements differ from those of truss elements, 

since derivatives of displacement (slopes) are also involved. Hermite 

functions, H" which satisry deflection and slope continuity, are used so that 

deflection at any point is given by 

w = H\w\ + H29\ + H3W2 + H492 or H\w\ + H2(dw/dx)\ + H3W2 + ~(dw/dx)2 

= H\w\ + (2/L) Hldw/dS)\ + H3W2 + (2/L) H4(dw/dS)2 
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since ~: =( ~~ }(~~)=(~){ ~~) 
Here, Cartesian coordinate x of any point in the element is related to non

dimensional coordinate ~ by 

where, x = XI (_I-_~) + X? (_I +_~) = (XI + x2) + -,,~_(X---=2,--_X---,I,-,--) 
2 - 2 2 2 

for -I :s; ~:s; + 1 

dx = (X2 -XI) =(L/2) 
d~ 2 

and 

Hi = a, + b,~ + C,~2+ d,~3 

By imposing the end conditions 

d~ 2 
or -=-

dx L 

V i=I,2,3,4 

WI =Oand (dW) =0 at ~=-I 
d~ I 

and W2 = 0 and (dW) = 0 at ~, = 1 
d~ 2 

these H, functions and their derivatives take the following values. 

at ~ =-1 at ~ = +1 at ~ =-1 at ~ = +1 

HI 0 HI' 0 0 

H2 0 0 H2' 0 

H3 0 1 H3' 0 0 

H4 0 0 H4' 0 

Coefficients a, b, c, d can then be obtained as 

1 3 1 
a l =- bl =-- CI =0 d l =-

2 4 4 

I -I -I 1 
a 2 =- b2=- c2=- d2 =-

4 4 4 4 

1 3 -I 
a3 =- b3 =- C3 = 0 d3=-

2 4 4 

-I -1 1 1 a --' b4=- c4 =- d4 =-4 - 4 ' 4 4 4 
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Th H 
_ (l-~)2(2+~) 

us, I - -'---':":"--'--"'-
4 

H2 = (l_~)2(~ + I) 
4 

H3 = (l+~)2(2-~) 
4 

H4 = (l+~)2(~-1) 
4 

or 

or 

or 

or 

(2-3~+~3) 

4 

(1 _ ~ _ ~ 2 + ~ 3 ) 

4 

(2+3~-~3) 
4 

(_1_~+~2 +~3) 

4 

Variation ofthese functions over the beam element is plotted in Fig. 6.5. 

_________________ = __ ~-Y: 
Node I Node} 

,'----=- ---------- --------- I 
Node I Node} 

FIGURE 6.5 Hermite Shape functions of a 2-noded beam element 

(d) 2-D linear interpolation for a triangular element 

The non-dimensional coordinates ~ and 11 and the shape functions N I , N2 
and N3 are also at any point P are given by above the figures. 

Where A is the area of the triangle; Al is the area of the triangle formed by 
points P, 2 and 3; A2 is the area of the triangle formed by points P, 3 and I; 
and A3 is the area of the triangle formed by points P, 1 and 2, as shown in 
Fig. 6.6. Hence, the shape functions Nh N2 and N3 are also called area 
coordinates. 

It can be seen that for any point P, A = Al + A2 + A3 

and so N1 +N2 +N3 =1 or N3=1-NI':"N2='1-~-11 
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The local Cartesian coordinates x and y and displacements u and v along 
these Cartesian coordinates are given by 

x=NI XI +N2 X2 + N3 X3 = XI~+ x211+ X3 (1-~-11) 

Similarly, y = Y\3~ + Y2311 + Y3 where, Y\3 = YI - Y3 and Y23 = Y2 - Y3 
..... (6.1) 

The Cartesian coordinates as well as corresponding non-dimensional 
coordinates are shown in Fig. 6.6 for a 3-noded triangular element. 

y 

x 

2(0,1) 

~----------~~~ 
3(0,0) 

FIGURE 6.6 Mapping of a triangular element in ~-11 coordinate system 

The displacements u and v can be represented in terms of the same non
dipJensional coordinates as 

u = NI UI + N2 U2 + N3 U3 

= (UI- U3)~ + (U2- u3)11 + U3 

v =NI VI + N2 V2 + N3-V3 

= (VI- V3~ + (V2- v3)11 + V3 

These equations can also be represented in matrix form by 

UI 

VI 

{:}=[:I 
0 N2 0 N3 :J u2 or {u} = [N] {q} 

NI 0 N2 0 v2 
u3 

V3 

Shape functions are plotted in Fig. 6.7 with non-dimensional coordinates 
indi~ed for each node. The three shape functions have a value of unity at 
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one node and a value of zero at all other nodes. In the figure, A), A2 and A3 
indicate areas used for the calculation of non-dimensional coordinates I; and 
II of any point P. 

__ ---:---::::::::;.,3(0,0) 

T 
I 

1(1.0) ~ 

2(0.1) 2(0.1 ) 

3(0,0) T 
1 

J...-

1(1 ,0) 

2(0.1) 

2(0.1) 

FIGURE 6.7 Shape functions of a 3-noded triangular element 

(e) 2-D quadratic interpolation for a triangular element 

the non-dimensional coordinates 1;, II and ~ remain same as above but the 
number of shape functions are increased to six corresponding to the six 
nodes of the element and are given below 

N I = 1;(21; - 1) 

N2 = 1l(211 - 1) 

N3 =~(2~ - 1) 

N4 = 41;1l 

Ns= 411~ 

N6= 4~1; 

Lines with constant values of N I, N2 and N3 are shown in Fig. 6.8 while 
variation of shape functions is plotted in Fig. 6.9. 

The cartesian coordinates x and y and displacements u and v in the element 
are given by 

x = NI XI + N2 X2 + N3 X3 + N4 X4 + Ns Xs + N6 X6 

177 
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y = Nl Yl + N2 Y2 + N3 Y3 + N4 Y4 + Ns Ys + N6 Y6 

U = Nl Ul+ N2 U2 + N3 U3 + N4 ll4 + Ns Us + N6ll6 

V =Nl Vl+ N2 V2 + N3 V3+ N4 V4+ Ns vs+ N6 V6 

N = 0 3 

AGURE 6.8 Lines of constant shape function value over the triangular element 

3 

~----------~----------~2 4 

FIG U R E 6.9 Shape functions of a 6-noded triangular element 

(f) 2-D linear interpolation for a quadrilateral element 

Unlike in the case of triangular element, which is identified by three non
dimensional coordinates each having values in the range 0 to 1, a 
quadrilateral element is identified by two non-dimensional coordinates each 
having values in the range -1 to + 1, as shown in Fig. 6.10. 

x = Nl Xl + N2 X2 + N3 X3 + N4 ~ 

Y = Nl Yl + N2 Y2 + N3 Y3 + N4 Y4 
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y 
4(-1,1) ,-----t-----, 3( 1.11 

1(-1,-1) 2( 1,-1) 

FIGURE 6.10 4-noded quadrilateral element in ~ - 11 coordinate system 

The coordinates and displacements at every point in the element are 

expressed in tenns of nodal values, using shape functions N), N 2, N3 and N4 as 

u = Nl Ul + N2 U2 + N3 U3 + N4 U4 

Shape functions at each node of a 2-D element can be derived as the product 

of shape functions along ~ direction and II direction passing through the 

particular node. 

Thus, 

where Nl!; and Nl'l are the shape functions of I-D elements with 

~ = -1 to +1 and II = -1 to + 1 

N = (1-~) (1-11) = (1- ~)(1 -ll) 
I 2' 2 4 

Similarly we can get N = (1 + ~)(1-11) . N = (1 + ~)(1 + ll) 
, 2 4 ' 3 4 

and N 4 = (1- ~Xl + ll) 
4 

Their values are graphically represented in Fig. 6.11. 
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3 

FIGURE 6.11 Shape functions of a 4-noded quadrilateral element 

(g) 2-D quadratic interpolation for a quadrilateral element 

This quadrilateral element, with 4 corner nodes and 4 mid-side nodes, is also 

identified by two non-dimensional coordinates each having values in the 

range -I to + I . But, the coordinates and displacement of any point in the 

element are expressed by using 8 shape functions (Ref. Fig. 6.12), as 

where, 

N 1 = - (1- ~)(I -1l)(1 + ~ + ll) 
4 

N 2 = - (I + ~)(1-11)(1- ~ + ll) 
4 

N 3 = - (1 + ~)(1 + 1l)(1- ~ -ll) 
4 

N 4 = - (1- ~)(1 + 1l)(1 + ~ -ll) 
4 

N 5 = (1- ~ 2 
)(1-11) 
2 

N 6 = (1 + ~)(1 -1l2) 
2 

N 7 = (1- ~ 2 
)(1 + ll) 
2 

N 8 = (1- ~)(1-112 ) 
2 
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4( -1,1) ...-----+-----, 3(1, I) 
7(0, I) 

8(-1,0) 6(1,0) 

5(0,-1 ) 

1(-1,-1 ) 2(1,-1) 

x 

FIGURE 6.12 Mapping of 8-noded quadrilateral in ~-T} coordinate system 

(h) 3-D linear interpolation 

• A 8-noded 3-D element is identified by three non-dimensional coordinates 
each having values in the range - I tQ + t, as shown Fig. 6. t 3. 

y 11 3(1,1,-1) 

6(1,-1,1) 

~---------------------+X 
5(-1,-1,1) 

FIGURE 6.13 Mapping of B-noded 3-D solid element in ~-1l coordinate system 

The coord.inates and displacement functions are given by 

x = NI XI + N2 X2 + N3 X3 + N4 ~ + N5 X5 + N6 X6 + N7 X7 + Ns Xs 

Y = N 1 YI + N2 Y2 + N3 Y3 + N4 Y4 + Ns Ys + N6 Y6 + N7 Y7 + Ns Ys 

Z = N I ZI + N2 Z2 + N3 Z3 + N4 Z4 + Ns Zs + N6 Z6 + N7 Z7 + Ns Zs 

and 

u = NI UI + N2 U2 + N3 U3 + N4 U4 + Ns Us + N6 ll6 + N7 U7 + Ns Us 

v = NI VI + N2 V2 + N3 V3 + N4 V4 + Ns Vs + N6 V6 + N7 V7 + Ns Vs 

W = NI WI + N2 W2 + N3 W3 + N4 W4 + Ns Ws + N6 W6 + N7 W7 + Ns Wg 
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Shape functions at each node of a 3-D element can be derived as the product 
of shape functions of I-D' elements along ~ direction, 11 direction and 
~ direction passing through the particular node. 

Thus, 

NI = NI!; . NIl] . NI~ 

where NI!;, NIl] and NI~ are the shape functions of I-D elements with 

~ = -I to + I, 11 = -I to + 1 and ~ = -I to + 1 

Similarly, we can get 

SA JACOBIAN 

NI = (l-~)(I-11) (l-s) 
222 

= -,--(1_-..=.;..~)-,-(1_-11--=..:..).:....(1_-s.=.:....) 
8 

N2 = (I +~)(1-11)(1-s) 
8 

N3 = (1 + ~)(I + 11)(l-s) 
8 

N4 = (l-~)(l+11)(1-s) 
8 

N s = (1- ~)(I - 11)(1 + s) 
8 

N6 = (l + ~)(l-11)(1 + s) 
8 

N 7 = (l + ~)(I + 11)(1 + s) 
8 

Ns = (l-~)(1 +1)(1 + ~) 
8 

In order to have unique mapping of elements, there should be only one set of 
cartesian coordinates for each set of corresponding non-dimensional coordinates. 

Fo[ . .a 2-D plate element in x and y coordinates, using chain rule. for partial 
derivatives, 

au au ax au ay 
-=--+--
a~ ax'~ ay'a~ 

Similarly for au 
~ 
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Expressing them in matrix fonn, 

{au/~} [Ox/~ Oyla~]{auIOx} {au'Oxl aulOrt = OxIOrt OyIOrt aulOy =[J] aulOyf 
where [J] is called the Jacobian or a matrix of partial derivatives of Cartesian 
coordinates of the element w.r.t. non-dimensional local coordinates of the 
element 

From eq. 6.1, [J] = [XI3 
X23 

YI3] or [Jrl = _1_[ Y23 
Y23 Det J - x23 

If nodes are numbered counter-clockwise, in a right-handed coordinate 
system, det J is +ve. 

For a 3-noded triangular plate element, from eq. 6.1 

[J]=l~ ~J==[XI3 YI3] 
Ox Oy X23 Y23 
Ort Ort 

or [J]-I =_1_[ Y 2l 

DetJ -X23 

where, Det J = Xu y 23 - X23 Y 13 

It can also be expressed as 

Xl Yl 0 Xl -X3 

DetJ= I x2 Y2 = 0 x2 -x3 

1 x3 Y3 1 x3 

== XI3 Y23 - YI3 X23 

YI -Y3 0 x13 

Y2-Y3 == 0 x23 

Y3 1 x3 

1 1 
Area of the element, A =="2 Det J =="2 (XI3 Y 23 - X23 .Y 13) 

1 I 1 

and [K] == f[B]T [D][B] dV == f f f[B]T [D][B] Det [J] d~ dT) dt; 
v -I -I -I 

For a 3-D element in x, Y and z coordinates, these relations can be expressed 
in matrix fonn in a similar way as 

{au/~} [Ox/~ Oyla~ f)z/~J{auIOx} {au lOx} au IOrt == OxIOrt Oy 1 Ort f)zIOrt aulOy == [J] au lOy 
au 1 at;, Ox 1 at;, Oy 1 at;, Oy 1 at;, au 1 f)z au 1 f}z 
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where, 

f

ax las 
[1] = ax I Or) 

ax I at" 

The same Jacobian relates derivatives of displacement components v and w 

also. 

6.5 STRAIN-DISPLACEMENT RELATIONS 

(a) For a l-noded triangular element 

{

Y23 aulOl; + (-YI3) au/iJIl } 
=(~tJ) (-x2])c3v/OS+ xl3 aulOr) 

(-X23 )aulOS + xl3 au/iJIl + Y23 avla~ + (-YI3) av/ilrJ 
Since 

u = N, ~, + N2 U2 + N3 U3 = (u,- U3) ~ + (U2- U3)" + U3 

aulas = u, - U3 = UI3; aula" = U2 - U3 = U23 

Similarly, av;a~ = v, - V3 = VI3; avla" = V2 - V3 = V23 

Therefore, 

1 r
Y23 

{t}=- 0 
DetJ 

X32 
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UI 

0 0 

X:l1 
VI 

=_1 [Y~3 Y31 Yl2 
0 0 

u2 
=[8]{q} x32 xl3 

DetJ v2 
x32 Y23 xl3 Y31 x21 YI2 

u3 

v3 

where strain-displacement matrix, 

[yn 0 Y31 0 YI2 

X:l1 [8]=_1_ 0 x32 0 xl3 0 
DetJ 

x32 Y23 xl3 Y31 x21 YI2 

The elements of [8] are constants and not functions of coordinates (since 
shape functions are linear in x and y).and hence, strain in a 3-node triangular 
element is constant over the entire element. 

Element stiffness matrix [Ke] is obtained from [Ke] = J [8]T [D] [8] dV. 
Here, the integration is carried out on non-dimensional coordinates with the 
limits 0 to + 1 or -1 to + I, depending on the particular case. Element with 
curved edges also is mapped into an element with straight edges in the non
dimensional coordinate system. Hence, for an element with curved boundaries, 
integration becomes much simpler in non-dimensional coordinate system 
compared to the integration in Cartesian coordinate system. 

(b) For a 4-noded quadrilateral (2-D) element 

Following the same procedure, we can get [8] platrix. The local non
dimensional coordinates ~ and 11 take values from -1 to + 1. 

Here, x = NI XI + N2 X2 + N3 X3 + N4 ~ 

Y == NI YI + N2 Y2 + N3 Y3 + N4 Y4 

US 
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Then, 

where, 

Now, 

and 

where, 

J =[Ox/~ fJy/~]=[JII J12 ] 
[] Ox/en, fJy/en, J 21 J 22 

J II = (~) 1-(I-T)xl +(I-T)x2+(1 +T)x3-(1 + T)x.11 

J 12 = (~) [- (I - T) YI + (I - T) ) Y2 + (I + T) Y3 - (I + T) Y4] 

J21 = (~) [- (I -~) XI - (I +~) X2 + (I +~) X3 + (I -~) '4] 

J22 = (~) [- (I-~)YI -(I +~)Y2+(1 +~)Y3+(I-~)Y4] 

{au/Ox} = (I/0etJ) [ J22 -JI2 ] {au/fff,} 
au/fJy -J21 JI1 au/Ori 

= (I/DetJ) 22 {8v/Ox} [ J 
8v/fJy -J21 

-J12 ]{8v/~} 
J I1 8v/Ori 

r& } {e}= 8v/fJy 

au/fJy+8v+Ox 

r J" 

-J12 0 

J~I 1 
au/~ 

= O;tJ 0 0 -J21 
au/Ori 

= [B]{q} 

-J21 J II J22 -J12 
8v/~ 

8v/Ori 

0 . r J" 
-J12 J~I 1x [B]=_I_ 0 0 -J21 

OetJ 
-J21 JI1 J22 -J12 

[ -1(1-~) '0 (1- T) 0 (1 +T) 0 -(1 +T) 

-(1~~)1 1 -(l-~) 0 -(1 +~) 0 (I +/;) 0 (I-/;) 

4 0 -(I-T) 0 (1- T) 0 (l +T) 0 

0 -(l-/;) 0 -(I +S) 0 (l +S) .0 (I-S) 
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Elements of this matrix are functions of coordinates, since shape functions 
include higher order terms and hence strain in this element is not constant 
over the element. 

(c) For a 8-noded quadrilateral (2-D) element 

Following the same procedure, we can get [B] matrix. The local non
dimensional coordinates; and 1') take values from -1 to + 1. 

x = NI XI + N2 X2 + N3 X3 + N4 Xi + Ns Xs + N6 X6 + N7 X7 + Ns Xs 

y = NI YI + N2 Y2 + N3 Y3 + N4 Y4 + Ns Ys + Nt'y6 + N7 Y7 + Ns Ys 

u = N I UI+ N2 U2 + N3 U3 + N4 U4 + Ns Us + N6 U6 + N7 U7 + Ns Us 

V =NI VI+ N2 V2 + N3 V3+ N4 V4 + N5 V5+N6 V6 + N7 V7+ Ns Vs 

where, 

NI = - (1- ;)(1-1')(1 +; + 1') 
4 

N 2 = - (1 + ;Xl-1')(1- ; + 1') 
4 

N 3 = - (1 + ;)(1 + 1')(1-; -1') 
4 

N 4 = - (1- ;)(1 + 1')(1 + ; -1') 
4 

N s = (1_;
2 
)(1-1') 

. 2 

N 6 = (1 + ;Xl _1')2 ) 
2 

N7 = (1-;2)(1+1') 
2 

N
g 
= (1_;)(1_1')2) 

2 

(d) For a 4-noded tetrahedron (3-D) element 

Following the same procedure, we get 

au/fJx aula; 

auliJy aul8rJ 
Ow 1& 

= [Jrl Ow I fX:, 
{~= 

liJy+iNlfJx au 18rJ + iN I iJt,. 
= [B]{q} 

. 
iNl&+OwliJy iN I fX:, + Ow 18rJ 

Ow/fJx+au/& Ow 10; + au I fX:, 

Here, [J] = [::: ~:: ::: 1 
X34 Y34 Z34 

If the elements of [Jrl are designated by the constants Ajj, then 
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[All AI2 An] 
[Jr l = A21 A22 An 

A31 A32 A33 

and AI' = All + AJ2 + AI3 ; A2' = A21 + A22 + An; A3' = AJI + Au + A33 

then, 

All 0 0 AI2 0 0 AI3 0 0 -A; 0 0 

0 A21 0 0 A22 0 0 A23 0 0 -A; 0 

[B]= 
0 0 A31 0 0 A32 0 0 A33 0 0 -A; 

0 A31 A21 0 A32 A22 0 A33 A23 0 -A; -A; 

A31 0 AJI A32 0 AI2 A33 0 AI3 -A; 0 -A; 

A21 All 0 A22 AI2 0 A23 AI3 0 -A; -A; 0 

Here again, elements of [B] matrix are constants since shape functions are 

linear functions and, hence, strain in this element is also constant throughout the 

element. 

6.6 SUMMARY 

• Higher order elements are broadly classified as - Serendipity 
elements, having no internal nodes and Lagrange elements, having 

internal nodes which can be condensed out at the element level before 

assembling. 

• Higher order elements use higher degree displacement polynomial 
and can represent true situation with lesser number of elements than a 

model with lower order elements. 

• Isoparametric elements model displacement as well as boundary with 
the same polynomial. A small number of higher order isoparametric 
elements can model curved boundaries of component accurately. 

Even a large number of lower order and non-isoparametric elements 

can only approximate curved boundary by a set of straight lines. 

• Isoparametric elements use non-dimensional coordinates / shape 
functions and facilitate programming for numerical integration on a 

computer. 
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OBJECTIVE QUESTIONS 

1. Curved boundary is better modeled by usi"g 

(a) non-dimensional shape functions (b) higher order elements 

(c) more number of simple elements (d) isoparametric elements 

2. Sum of shape functions at a point is 

(a) 1 (b) 0 (c) any +ve integer (d) any -ve integer 

3. When fewer nodes are used to define the geometry than are used to define 
the displacement, the element is called __ element 

(a) subparametric (b) isoparametric 

(c) superparametric (d) complex 

4. When same number of nodes are used to define the geometry and 
displacement, the element is called __ element 

(a) subparametric (b) isoparametric 

(c) superparametric (d) simple 

5. When more nodes are used to define the geometry than are used to define the 
displacement, the element is called __ element 

(a) subparametric 

(c) superparametric 

(b) isoparametric 

(d) complex 

6. Derivatives of displacement function with respect to element coordinate 
system and non-dimensional coordinate system is given by 

(a) Lagrangian (b) Poisson 

(c) Gaussian (d) Jacobian 

7. Number of shape functions for a triangular plane stress element are 

(a) 2 (b) 3 (c) 4 (d) 6 
8. Number of shape functions for a quadrilateral plane stress element are 

(a) 2 (b) 3 (c) 4 (d) 8 

9. Number of shape functions for a 8-noded quadrilateral' plane stress element 
is 

(a) 2 (b) 3 (c) 4 (d) 8 

10. Shape functions for a triangular plane stress element are also called 

(a) r-s coordinates 

(c) volume coordinates 

(b) area coordinates 

(d) x-y coordinates 
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SOLVED PROBLEMS 

Example 6.1 

For a point P located inside the triangle shown in figure, the shape functions NI 
and N2 are 0.15 and 0.25 respectively. Determine the x and y coordinates of 
point P. 

Solution 

A triangular element will have three natural or non-dimensional coordinates N), 
N2 and N3 such that N I + N2 + N3 = I or N3 = I - N 1-N2. 

y 3 

2 

~-----------------------+x 

Hence, coordinates of point P i.e., (xp, yp) are given by 

Xp = Nlxl + N2X2 + N3X3 = Nlxl + N2X2 + (1- N I- N2)X3 

= 0.15 x I + 0.25 x 4 + (I - 0.15 - 0.25) x 3 = 0.15 + 1.0 + 1.8 = 2.95 

yp = NIYI + N2Y2 + N3Y3 = NIYI + N2Y2 + (I - N I- N2)Y3 

= 0.15 x 1+ 0.25 x 2 + (1 -0.15 -0.25) x 5 = 0.15 + 0.5 + 3.0 = 3.65 

Example 6.2 

The coordinates and function values at the three nodes of a triangular linear 
element are given below. Calculate the function value at (20,6). 

Node I Coordinates (13,1) Function value 190 

Node 2 Coordinates (25,6) Function value 160 

Node 3 Coordinates (13,13) Function value 185 

y 3 

2 

~-----------------------+x 
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Solution 

A triangular element will have three natural or non-dimensional coordinates Nt, 
N2andN3suchthatNI+N2+N3=1 or N3= I-NI-N2 

Hence, coordinates of point P i.e., (xp, yp) are given by 

Xp = Nlxl + N2X2 + N3X3 = NI (XI - X3) + N2 (X2 - X3) + X3 

20 =NI (13 -13) + N2(25 -13) + 13 

yp = NIYI + N2Y2 + N3Y3 = NI (YI - Y3) + N2 (Y2 - Y3) + Y3 

6 =NI(1-13)+N2(6-13)+13 

=-12NI-7 x L7J+13 or N -~ 1-
144 

Hence, 

Function value at (xp, yp) = NIVI + NN2 + NN3 

= (35 )XI90+(l-.-)XI60+( 25 )XI85=171.632 
144 12 144 

Example 6.3 

The nodal coordinates of the triangular element are (1,2), (5,3) and (4,6). At the 
interior point P, the x-coordinate is 3.3 and the shape function at node 1 is 0.3. 
Detennine the shape functions at nodes 2 and 3 and also the y-coordinate at the 
point p~ 

Solution 

A triangular element will have three natural or non-dimensional coordinates NJ, 
N2andN3suchthatNt +N2+N3= 1 orN3= I-NI-N2. 

Hence, coordinates of point P i.e., (xp, yp) are given by 

Xp= Ntxt + N2X2 + N3X3 = Nt (XI - X3) + N2 (X2 - X3) + X3 

3.3 =Nt (1-4) + N2(5 -4)+ 4 = 0.3 x (-3) + N2 + 4 

=N2 + 3.1 or N2 = 0.2 

Hence, N3 = 1 - N t - N2 = 1 - (0.3) - (0.2) = 0.5 

yp = NtYt + N2Y2 + N3Y3 = NI (Yt - Y3) + N2 (Y2 - Y3) + Y3 

;, 0.3 x (2 - 6) + 0.2 x (3 - 6) + 6 = -1.2 - 0.6 + 6 = 4.2 
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Example 6.4 

Triangular elements are used for stress analysis of a plate subjected to in plane 
load. The components of displacement along x and y axes at the nodes i, j and k 
of an element are found to he (-0.001, 0.01), (-0.002, 0.01) and (-0.002, 0.02) 
cm respectively. If the (x, y) coordinates of the nodes i, j and k are (20, 20), 
(40, 20) and (40, 40) in cm respectively, find (a) the distribution of the two 
displacement components inside the element and (b) components of 
displacement of the point (xp, yp) = (30, 25) cm. 

Solution 

(a) Distribution of displacement components u and v inside the element are 
given by 

Up = NI UI + N2 U2 +N3 U3 = -0.001 NI - 0.002 N2 - 0.002 N3 

and Vp = NI VI + N2 V2 +N3 V3 = 0.01 NI + 0.01 N2 + 0.02 N3 

(b)A triangular element will have three natural or non-dimensional coordinates 
Nt. N2andN3suchthat N I +N2+N3=1 or N3=I-NI-N2 

Hence, coordinates of point P i.e., (xp, yp) are given by 

Xp = Nlxl + N2X2 + N3X3 = Nlxl + N2X2 + (1 - N I- N2)X3 

30 = 20 NI + 40 N2 + 40 (I - N I- N2) 

=40-20NI 

Therefore, 20NI = 10 or NI =0.5 

Similarly, yp = NIYI + N2Y2 + N3Y3 = NIYI + N2Y2 + (1- N I- N2)Y3 

25 = 20 NI + 20 N2 + 40 (1 - N I- N2) 

= 40 - 20 N I - 20 N2 

Therefore, 20N2 = 15-20NI = 15-10 or N2 =0.25 

and N3 = 1 - N I- N2 = 1 - 0.5 - 0.25 = 0.25 

The displacements u and v at (xp, yp) are given by 

Up = NI UI + N2 U2 + N3 U3 

= 0.5 x (-0.001) + 0.25 x (-0.002) + 0.25 x (-0.002) 

=-0.0015 cm 

and Vp = NI VI + N2 V2 +N3 V3 

= 0.5 x 0.01 + 0.25 x 0.01 + 0.25 x 0.02 = 0.0125 cm 
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Example 6.5 

The nodal coordinates and the nodal displacements of a triangular element, 

under a specific load condition are given below. 

XI = 0, YI = 0, XJ = I mm, Yj = 3 mm, Xk = 4 mm, Y k = I mm 

UI = I mm, VI = 0.5 mm, UJ =-0.05 mm, VJ = 1.5 mm, Uk = 2 mm, Vk =-1 mm 

If E = 2 x 105 N/mm2 and !.1 = 0.3, find the stresses in the element 

Solution 

On plotting coordinates of the three nodes of the triangular element, the nodes I, 

J and K are identified as I, 3 and 2 respectively to represent the nodes in the 

counter-clockwise direction around the element. 

Y 23 = Y KJ = I - 3 =-2 

X32 = XJK = I - 4 =-3 

Y31=YJ(=3-0=3 Y12=YIK=O-I=-l 

X13=XlJ=O-1 =-1 X21 =XKI=4-0=4 

Jacobian of the triangular element, J = [Xl3 
X23 

y 

YI3 ]=[-1 -3] 
Y23 3-2 

K(4,1) 

~~--------------------------+x 

Determinant of Jacobian, [J] = (-I )(-2) - (-3)(3) = II 

In a 3-noded triangular element, stresses are constant throughout the 

element. The three stress components in the element are given by 

{cr} = [0] {E} = [0] [B] {u} 

lV" 
0 Y31 0 Y12 

xO" Jrll) =[0]_1 0 X32 0 Xl3 0 
I J I . X32 Y23 Xl3 Y31 X 21 Y12 
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[I v o 1 [-2 0 

= (I_EV') ~ o .~ 0 1 -3 

(l-v)/2 11 -3 0 -2 

5 [I 0.3 
= 2xl0 03 I 

11 x (1- 0.3
2

) ~. 0 

o ]{-4.15} o -70 
0.35 9.55 

= 2xl0
5 

-8:245 N/mm2 
10.01 {

-625 } 

3.3425 

Example 6.6 

1.0 

~Ij 
0.5 

3 0 -I 
-0.05 

0 -I 0 
1.5 

-I 3 4 
2.0 

-1.0 

x, y, z coordinates of nodes of a tetrahedron element are (30,0,0), (0,10,0), 

(0,0,20) and (20, 20, 10). Formulate strain-displacement matrix [8]. 

Solution 

Yl4 ZI4j r 10 -20 -
101 

Y24 Z24 = -20 -10 -10 

Y34 Z34 -20 -20 10 

[

All AI2 A13'j [-300 400 
[Jr

l 
=[A]= A21 A22 A23 =(13~~0) 400 -100 

A31 A32 A33 200 600 

100 1 
300 

-500 

and 
A ,_ -(All + AI2 +AI3) _ -(-300+ 400+ 100) _ -2 

I - 13000 - 13000 - 130 

A ,_ -(A21 +A22 +A23 ) _ -(400-100+300) _ -6 
2 - 13000 - 13000 - 130 

A ,_ -(A3\ +A32 +A33) _ -(200+600-500) _ -3 
3 - 13000 - 13000 - 130 
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Then, 

All 0 0 A12 0 0 Al3 0 0 -A; 0 0 

0 A21 0 0 A22 0 0 An 0 0 -A' 2 0 

[B]= 
0 0 A31 0 0 A32 0 0 A33 0 0 -A; 

0 A31 A21 0 A32 A22 0 A33 An 0 -A; -A~ 

A31 0 All A32 0 A12 An 0 Al3 -A; 0 -AI 

A21 All 0 A22 A12 0 An Al3 0 -A~ -A; 0 

Thus, 
-3 0 0 4 0 0 1 0 0 -2 0 0 

0 4 0 0 -1 0 0 3 0 0 -6 0 

[B]=C~~ 0 0 2 0 0 6 0 0 -5 0 0 -3 

0 2 4 0 6 -1 0 -5 3 0 -3 -6 

2 0 -3 6 0 4 -5 0 -3 0 -2 

4 -3 0 -1 4 0 3 0 -6 -2 0 

Example 6.7 

Detennine the deflection at the point of load application using a one-element 
model for the configuration shown in figure. 

Solution 

Numbering the nodes of the element in counter-clockwise direction as shown, 

Y23=-20; Y31 =0 ; Y12 =20 

X32 = 30 ; Xl3 = -30 ; X21 = 0 

Jacobian of the triangular element, [J]=[X13 Y\3]_[-30 0] 
X 23 Y23 - -30 -20 

Determinant of Jacobian IJI = (-30) (-20) = 600 

lOON 

T 
20mm 

1 

3 

SON 

t= 10 mm 

E = 70 Gpa 

v =0.3 

1.95 
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The nodal displacements {u} can be calculated from {P} = [K] {u}. So, the 

stiffness matrix [K] has to be calculated from [K] = [8]T [0] [8] 

where, 

r
-20 

=_1_ 0 
600 30 

o 
30 

o 
o 

-20 -30 

o 20 

-30 0 

o 

-20 

o 

o 

o 0 

30 0 

-20 -30 

-9 20 0~1 
-30 6 

o 0 

o 30 

IKJ=tArB]T [DUB1= IOx300x70x10
3 

0 
600x600xO.91 0 

3; =~~ [-20 9 
-6 30 

-30 0 

o 
o 

=641 

20 

o 
o 0 

o 20 

10.5 - 7 - 10.5 

715 -390 -315 180 -400 210 

-3901040 210 -900 180 -140 

-315 

180 

-400 

210 

210 315 

-900 0 

180 0 

-140 -210 

o 
900 

-180 

o 

o 
-180 

400 

o 

-210 

o 
o 

140 

After applying boundary conditions, UI = VI = U2 = V2 = 0, we get 

or {
50} [400 0 ]{u3

} 
-100 = 641 0 140 V 3 
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which give the displacements at node 3 as 

50 
u3 =( )=0.000195mm 

641 x 400 

-100 
V3=( )=-0.0011143mm 

641x140 
and 

By the conventional displacement polynomial method 

(Note: This solution was already given in chapter-5. However, for a quick 
comparison between these two methods, it has been repeated here.) 

{u} = [I x y] {u} and {v} = [I x y} {~} 

The coefficients UJ, U2, U3, ~J, ~2 and ~3 are evaluated from the above in 
terms of nodal displacements as 

r} l' 0 2°lr} u2 = 1 0 0 u 2 
u3 I 30 20 u 3 

r} r 0 600 0 It} lO 60 

m~:} or u 2 = 6~0 - 20 0 20 - u2. = 6
1
0 - 2 0 

u 3 L 30 - 30 0 u3 3 -3 

Similarly, 

{:}[ 
0 

~Ol{:: } 0 

30 20 ~3 

{::}~ 6~ol-~0 
600 

°lr} lO @ Ole} or 0 20 v 2 = 6
1
0 - 2 _0 2 v 2 

~3 30 -30 o V3 3 3 0 V3 

uJ 

r& } lO 
0 0 0 

rl 

U2 

{e} = av/8y = 0 0 0 0 0 
U3 

8u/8y + av/fJx 0 0 0 ~J 
~2 

~3 
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0 60 0 0 0 0 U I 

-2 0 2 0 0 0 u2 I 0 0 0 
3 -3 0 0 0 0 

!J =_1 r~ u3 0 0 0 0 = [8]{q} 
60 0 0 0 0 0 60 0 

0 0 
VI 

0 0 0 -2 0 2 v2 

0 0 0 3 -3 0 V3 

r-
2 0 2 0 0 

~J where, [8] = _1 0 0 0 3 -3 
60 

3 -3 0 -2 0 

This matrix is same as the one obtained through iso-parametric approach, 
except that the elements of the stiffness matrix in this method correspond to the 
displacement vector [UI U2 U3 VI V2 V3]T whereas in the previous method 
they correspond to the displacement vector [UI VI U2 V2 U3 v3f. The 
sequence of load components in the load vector has to be correspondingly 
modified. Rewriting the [8] matrix to correspond with the displacement vector 
[UI VI U2 V2 U3 V3], 

715 -390 -315 180 -400 

-390 1040 210 -900 180 

[K] = t A [8t [0] [8]= 640 
-315 210 315 0 0 

180 -900 0 900 -180 

-400 180 0 -180 400 

210 -140 -210 0 0 

After applying boundary conditions, UI = VI = U2 = V2 = 0, we get 

{P}R = [K]R {uh 

or {-~~O} -(0.0~156)[ 4~0 I~O 1 {~~} 
or U3 = 0.000195 mm 

V3 = -0.001114 mm 

210 

-140 

-210 

0 

0 

140 

Check Reactions are obtained from the assembled stiffness matrix, 
corresponding to the fixed degrees of freedom, and checked with 

Rlx +R2X +50=0; Rly +R2y -100=0 
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R1X 715 -390 -315 180 -400 210 

R1y -390 1040 210 -900 180 -140 
= 641 

R2X -315 210 315 0 0 -210 

R2Y 180 -900 0 900 -180 0 

-199.96 

122.47 
N 

149.96 

-22.50 

Static equilibrium relations using calculated reactions are 

R1x + R2X + 50 = -199.86 + 149.96 + 50::::: 0 

R1y + R2y -100 = 122.47 - 22.50 - 100::::: 0 

0 

0 

0 

0 

0.000195 

-0.001114 

Note: The given thick plate, from university question paper, should not be 

analysed as a 2-D problem. It can not be solved as a 3-D problem manually. 

Finite element analysis gives approximate resull.\' for the engineering 
problems. In this simple example, this was evident from the fact that the first 
condition was completely satisfied while a small discrepancy was seen in the 
second condition with the results obtained. The discrepancy increases with the 
order of the reduced stiffness matrix due to numerical rounding off errors 
associated with matrix inversion techniques using digital computers. 
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CHAPTER 7 

FACTORS INFLUENCING 
SOLUTION 

7.1. DISTRIBUTED LOADS 

In the discussion so far, analysis has been confined to structures subjected to 
specified nodal loads. But, many engineering problems include distributed loads 
like 

• Loads along the length of 1-0 elements such as wind load on columns, 
self weight of beams 

• Loads along the edges of 2-D elements such as in-plane pressure on 
edges of plates or axi-symmetric solids; pressure (bending) load normal 
to the surface of the plate 

• Loads on surfaces of 3-D elements such as pressure on one or more 
surfaces of a thick solid component 

• Loads on volumes of 3-D elements such as self weight, centrifugal 
force on a rotating component. 

Such loads are usually represented by equivalent loads, based on force 
equilibrium, in strength of materials. 

For example, a uniformly distributed load 'p' on a beam AB of length 'L', as 
shown in case-l of Fig. 7.1, is approximated by two equal parts of the beam as 
shown in case-2. The distributed load on both the parts is transferred to the ends 
of the beam as point load of pL/2 and moment due to the distributed load 
represented by the resultant load of pL/2 acting at a distance of L/4 from beam 
end, as shown in case-3. Thus, 

pL 
PI =P2 =- and 

2 
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These statically equivalent loads are shown in case-4. 

p over L 

A Case-I B 

p over Ll2 p over Ll2 pLl2 at Ll4 

1 
pLl2 at Ll4 

from end A 

i ~ ~ ~ ~ ~ ~ ~ ~ ~ 
from endB 

A B 
A B 

Case-2 Case-3 

Case-4 

FIGURE 7.1 Statically equivalent loads 

If beam AB is simply supported at its two ends, then the reactions based on 
the static force equilibrium conditions L F = 0 and LM = 0 will be equal and 
opposite to these equivalent loads. 

Finite element method is based on minimum potential energy theory for the 
calculation of stiffness matrix or load-displacement relations. It will, therefore, 
be consistent if the equivalent loads are also based on energy. It is noticed that 
consistent loads used in FEM, give displacements identical with those from 
closed form solutions. 

7.2 STATICALLY EQUIVALENT LOADS VS. CONSISTENT LOADS 

Statically equivalent loads, even though satisty force and moment equilibrium, 
do not give the same nodal displacements as the actual loads. Consistent loads, 
based on energy equivalence, give the same displacements as obtained with the 
actual loads, in addition to satistying force and moment equilibrium. For this 
reason, consistent loads are used in FEM. This can be verified by the following 
example. 

Consider a simple cantilever AB of length L, fixed at end A and subjected to 
uniformly distributed'load p, as shown in case-l of Fig. 7.2. The statically 
equivalent load system is shown in case-2 of Fig. 7.2 while the consistent load 
system is shown in case-3 of Fig. 7.2. In these two cases, a point load and a 
moment at ends A and B can replace the distributed load. Since end A is fixed, 
the load and moment at A add to the reactions at A without contributing to 
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displacement at any point on the cantilever. Hence, load and moment at end B 
only are shown in these figures. 

~ ~ 1.\ i i i --.t I, ~* 1;\ ~* II pl.~g(~l PI'ilJ x~ x~ 
Casc·l Casc-2 l ,,,c-3 

FIGURE 7.2 Distributed and equivalent loads 

Case-1: Actual load 

At any section, distance x from 8, from simple theory of bending 

,Bending moment M ~ pox{; ) ~ ~ EI( ::; 1 
where v is the displacement normal to the axis of the beam 

E is the modulus of elasticity of beam material 

and I is the moment of inertia of the beam cross section 

. EI dv P x
3 

C Integratll1g, - - == -- + 1 
dx 6 

dv 
The constant C I is evaluated from the houndary condition - == 0 at x = L 

dx 

Thus, 
P L3 dv p X 3 P L3 

C =-- and -EI - =---
1 6 dx 6 6 

px4 pL3 X 
Integrating again, - EI v = -- - -- + C 

24 6 2 

The constant C2 is evaluated from the boundary condition v = 0 at x = L 

pL4 pL4 3pL4 pL4 
C ==--+-==--==-

2 24 6 24 8 
Thus, 

The maximum displacement is obtained at the free end, i.e., at x = 0 

P L4 
-Elv=C2 or v=---

8 EI 

Case-2 : Statically equivalent loads 

As explained in section 7.1, loads P B == P Land M B == P L2 ,which satisfy static 
2 8 

equilibrium conditions, are used as equivalent loads. 

203 
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At any section, distance x from B, from simple theory of bending 

BendIng moment M = - . x - -- = - EI --. (PL) pe (d2V) 
2 8 dx 2 

. dv p L x2 P L2 x 
IntegratIng, - EI- = --- --+ C] 

dx 4 8 

The constant C] is evaluated from the boundary condition dv = 0 at x = L 
dx 

Thus, C] = - P L3 and _ EI dv = P Lx 2 _ P L2 X _ P e 
8 dx 4 8 8 

pLx3 pL2 x 2 pex 
Integrating again, - EI v = --- - --+ C 2 

12 16 8 

The constant C2 is evaluated from the boundary condition v = 0 at x = L 

Thus, C2 = -p - .(-4+3+6)=-P-
( 

L4) S L4 
48 48 

The maximum displacement is obtained at the free end, i.e., at x = 0 

- EI v = C2 or 
-SpL4 

v=--'----
48 EI 

It can be seen that the displacement v in this case is different from that of 
case-1 0 

Case-3 : Consistent loads 

pL pL2 
Loads PB =-andMB =-- ,based on energy equivalence, as explained 

2 12 
later are used to represent distributed load. 

At any section, distance x from B, from simple theory of bending 

. (PL) pe d
2
v Bendmg moment M = - . x - -- = -EI-

2 12 dx 2 

. dv P Lx 2 p ex 
IntegratIng, - EI - = -- - --+ C] 

dx 4 12 

The constant C] is evaluated from the boundary condition dv = 0 at x = L 
dx 
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Thus C = - P L3 and _ EI dv = P L x 2 _ P L2 X _ P e 
'1 6 dx 4 12 6 

pLx3 pL2 x2 pL3 x 
Integrating again, - EI v = --- - --+ C2 12 24 6 

The constant C2 is evaluated from the boundary condition v = 0 at x = L 

Thus, C2 = - .(-2+1+4)=--=-
[

p L4] 3 P L4 pC' 

24 24 8 

The maximum displacement is obtained at the free end, i.e., at x = 0 

_p L4 
v=--

8E1 
- EI v = C2 or 

It can be seen that the displacement 'v' in this case is identical to the 
correct value represented by case-I and hence consistent loads. based on 
work or energy equivalence. are preferred in FEM 

The shape functions used to define displacement, in natural coordinate 
system, over a finite element can also be used to calculate nodal loads 
vector consistent with the loads distributed over an edge or a surface of 
an element. These consistent loads are calculated for different types of 
distributed loads (on edge, area or volume), as explained below. 

(a) Consistent nodal loads corresponding to distributed body forces are 
given by 

{PB }= nNY{X}dv 
v 

where {X} indicates distributed load over the volume of the body 

For a beam element with uniformly distributed self weight, 

[N] = [L12(3 - 2L1) L12L2 L22(3 - 2L2) -L1Ll] 

{p.l= b h I[NY {pldL=(b ~i L lIn 
(b) Consistent nodal loads corresponding to distributed surface or traction 

forces are given by 

{ps}= nNf {T}ds 
s 

where {T} indicates distributed load over the surface of the body 
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For a beam element with uniformly distributed pressure load {p}, in 

units of force per unit .length (w), assuming that the load is uniformly 

spread across the width 'b' of the cross-section, 

Jpds=b JpdL= JWdL 
S L L 

Thus, 

{PS }= b ~Nr {p}dL 
L 

6 6 

bLp L wL L 
--

12 6 12 6 

-L -L 

7.3 CONSISTENT LOADS FOR A FEW COMMON CASES 

(a) Load on a beam 

1. Beam of length 'L' with a concentrated load 'P' at distance 'a' 

from node 1 (r = aiL) 

p) = P (l - 3r + 2r\ 

M) =-P L (r- 2r2 + r3
); 

2 

P2 = P (3r2 - 2r3
) 

M2 = -P L (- r2 + r) 

For the particular case when the load is at the center of the beam, 

r= ~ and 

P 
p)=-

2 

M) =-PLI 8 

P 
P2 =-

2 

M2 =+P LI 8 

2 
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2. Beam of length 'L' with a uniformly distributed load, w. Let P = 

w L be the total load 

wi I 
~1--------------~2 

p_P_wL 
1- 2 - 2 

-PL 
M I =--

12 

P wL 
P2 =-=--

2 2 
M _PL 

2 - 12 

3. Beam with a linearly varying load (0 to w). Let P = w L / 2 be the 

total load 

P-~ 1-
10 

-PL 
M I =--

15 

(b) Load along an edge of a plate 

Moments at nodes are not relevant here, since rotations of nodes are not 

treated as DOFs. 

4. Plate (modeled with CST elements) subjected to uniform pressure 

'w' along an edge. Let P = w L be the total load 

'--______ ---'1 w 

I 2 

P P 
PI =- P2 =-

2 " 2 

5. Plate (modeled with CST element) subjected to linearly varying 
wL 

pressure (0 to w) along an edge. Let P = -- be the total load 
2 

~w 
2 

P 
_2P 

2-
3 
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6. Plate (modeled with LST elements) subjected to uniform pressure 
'w' along an edge. Let P = w L be the total load 

w I I 
1 3 2 

PI=~' p-p. P
3
=2P 

6' 2- 6 ' 3 

Note: Corresponding statically equivalent nodal loads would be PI = ~; 
4 

P2 = P and P3 = P, distributing equally P over each half of 
422 

beam (I -3 & 3-2). 

7. Plate (modeled with LST element) subjected to linearly varying 
wL 

pressure (0 to w) along an edge. Let P = -- be the total load. 
2 

-========:::=J w 
122 

P 2P 
PI=O; P2 =3; P3 =3 

(c) Load normal to the sutface 0/ a plate 

8. 3-noded Triangular Plate with uniform pressure normal to the 
surfuce, w. Let P = w A be the total load. 

3 

~ 
1 2 

P 
At comer nodes, PI = P2 = P3 =-

3 
9. 6-noded Triangular Plate with uniform pressure normal to the 

surface, w. Let P = w A be the total load. 

3 

~ 
1 4 2 

At comer nodes, PI = P2 = P3 = 0 

P 
At mid-side nodes, P4 = P5 = P6 =-

3 
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10. 4-noded Quadrilateral Plate with uniform pressure normal to the 
surface, w. Let P = w A be the total load. 

3 

P 
At comer nodes, PI = P2 = P3 = P4 ="4 

II. 8-nodcd Quadrilateral Plate with uniform pressure normal to the 
surface, w. Let P = w A be the total load. 

3 

8 

P 
At comer nodes, PI = P2 = p) = P4 = - -

12 

At mid-side nodes, Ps = P6 = P7 = P8 = ~ 
3 

7.4 ASSEMBLING ELEMENT STIFFNESS MATRICES 

Solution of any practical problem by finite element method involves a very 
large number of simultaneous equations and hence, computer memory needs to 
be effectively utilised. The following techniques are therefore utilised to 
effectively use the available computer memory. 

Element stiffness matrices are symmetric. Therefore, assembled stiffness 
matrix of the entire structure is also symmetric. Storing half the matrix is hence 
adequate. But, for storing even half of n x n stiffness matrix allocation of as 
many memory locations for the variable K(n, n), no saving of computer memory 
required. 

(a) Storing a banded matrix - Stiffness matrix is usually a banded matrix, 
in addition to being symmetric, depending on the nodal connectivity of 
the elements, as explained in Fig. 7.3 for the simple case of a 
rectangular plate modeled with 4-noded quadrilateral elements. 

209 



210 FINITE ELEMENT ANALYSIS 

Element-I is linked to nodes I, 2, 7 and 6. Hence, contribution of 
element-I in the assembled stiffness coefficients will be found in the 
rows and columns associated with these four nodes only. Likewise, each 
of the other elements will have contributions in the rows and columns of 
the assembled stiffness matrix corresponding to their respective four 
comer nodes only. None of the elements 2-8 are linked to node-I. 
Hence, assembled stiffness mat~ will not have non-zero terms in (i, j) 
positions, where row 'i' and column 'j', correspond to the degrees of 
freedom associated with nodes 3,4,5, 8, 9, 10, 11, 12, 13, 14 and IS. 
While assembling such a stiffness matrix in the computer, significant 
number of memory locations can be saved by avoiding entries 
corresponding to these zero values. 

2 3 4 5 

0 0 G 0 
6 7 8 9 

IO 

0 G [2] 0 
1l 12 13 14 15 

FIGURE 7.3 Numbering of nodes in a model 

Half Bandwidth 'b' = (Max. node number difference for anyone 
element + 1) x Number ofDOF per node 

. Storing a symmetric banded matrix requires n x b memory locations as 
against n x n memory locations required otherwise. It is a rectangular 
matrix of n rows and b columns, first column representing diagonal 
elements of the square matrix. The algorithm in the program properly 
identifies elements of the matrix. For example, ~,4 is stored as ~,I ; ~,5 

as ~,2; ~,6 as ~,3 and so on till all non-zero elements are covered. In 
general, kn,m of the assembled matrix is identified by kn,m-n+l in the 
banded matrix. The banded matrix of order 12 x 7, as stored in this way, 
is represented below with diagonal element indicated by 'd'. Since the 
symmetric half of the band matrix has width 'b' in the first few rows 
and reduces to I in the last row, the banded matrix wiII have some zero 
values in the last few rows as shown in Fig. 7.4. 
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d x x x x x d x x x x x 

d x x x x x Os beyond 
bandwidth 

d x x x x x 

d x x x x x d x x x x x 

d x x x x x d x x x x x 

d x x x x x d x x x x x 

d x x x x x d x x x x x 

d x x x x x d x x x x x 

d x x x' x d x x x x 0 
symmetric d x x x d x x x 0 0 

d x x d x x 0 0 0 

d x d x 0 0 0 0 

d d 0 0 0 0 0 

Half of a symmetric matrix Storing in band matrix form 

FIGURE 7.4 Storing half of a banded matrix in different forms 

(b) Minimising bandwidth of stiffness matrix - Bandwidth of the 
assembled stiffness matrix can be minimised by renumbering node 
numbering sequence of a finite element model. 

As an example, let us consider a ring modeled by a number of curved 
beam el~ments. Case-I and case-2, shown in Fig. 7.5, follow two 
different node numbering schemes. 

Case 1 Case 2 

FIGURE 7.5 Minimising bandwidth by renumbering nodes of a simple ring 
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In case-I, Maximum node number difference = 9 - 1 = 8 
and half bandwidth b = (8 + 1) x No. OOF/node 

while, in case-2, Maximum node number difference = 3 - 1 or 5 - 3,. =2 
and b = (2 + 1) x No. ofDOF/node 

For all other elements, node number difference is less than or equal to 
the above values. 

Let us consider one more example of a plate with 2 OOF per node. It is 
shown with two node numbering sequences as case-l and case-2 in 
Fig.7.6. 

23 24 25 26 27 28 29 30 31 32 33 

12 13 14 15 16 17 18 19 20 21 22 

1234567891011 

Case-l 

3 6 9 12 15 18 21 24 27 30 33 

'I Is Is In 114Jnr0 1"1'61'9132 

1 4 7 10 13 16 19 22 25 28 31 

Case-2 

Figure 7.6 Minimising bandwidth by renumbering nodes of a plate 

In case-I, Half bandwidth, b = (24- 12 + 1) x 2 = 26 for top left element 

In case-2, Half bandwidth, b = (6 - 2 + 1) x 2 = 10 for the same element 

The bandwidth of this element happens to be equal to the bandwidth of 
any other element in the model and, hence, represents the maximum 
bandwidth for these two cases. 

In this simple model, total number of OOF = 33 x 2 = 66. 

If entire stiffness matrix is stored, computer memory required = 66 x 66 

If banded stiffness matrix is stored, 

computer memory required = 66 x 26 in case-l and 66 x lOin case-2. 

Several algorithms are developed for selecting appropriate node 
numbering sequence in an actual problem so as to minimise bandwidth. 
Some of thtUn are used, even without the knowledge of the end user, in 
many general purpose commercial software. 

(c) Skyline method of assembly - Bandwidth may not be the same for all 
the elements in a practical problem with irregular geometry. Then 
within the maximum bandwidth, b, used for computer memory 
requirement starting zeroes of all columns can be avoided by following 
a different method of assembly. Thus, requirement of computer memory 
can be minimised. This method also avoids the need to store the zero 
values of the last few rows of the banded matrix. Here, the banded 
matrix K is stored as a column vector A, with columns of banded matrix 
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stored one after the other. Each column is of variable length and starts 
with the first non-zero value in that column. Intermediate zeroes need to 
be stored. Another array variable (10) stores the sequential address of 
the last term of each column (diagonal elements) so that the program 
can identify location of each stiffness coefficient in the column vector. 

The elements are identified as shown in the following example, for a 
simple 7 x 7 stiffness matrix. In actual practice, the saving of computer 
memory will be very large, since the stiffness matrix wi1\ be of a very 
large size. The square and banded stiffness matrix 

kll k12 0 k14 0 0 0 

k22 k n k24 k25 0 0 

k33 k34 0 k36 0 

[K]= k44 0 k46 0 

symmetric k55 k56 k57 

k66 k67 

k77 

is stored in a single column matrix as 

{K} = [kll kJ2 k22 kn k33 k14.k24 k34 ~4 k25 

o 0 k55 k36 ~ k56 ~ k57 ~7 k77]T 

Note that starting elements k\3' k15, k16, k26, k17, k27, k37 and ~7 in 3Td
, 5th

, 

61h and 71h columns having value zero, are not stored while elements k35 
and ~5, also having value zero, are stored since they are included in 
between elements of a particular column with non-zero value. 

Another vector {IO}, ith element of which corresponds to the position of 
the ilh diagonal element in [K], helps in identifying each element of {K} 
with its corresponding position in [K] 

{IO} = [1 3 5 9 13 17 20]T 

Position of any element in the jlh column of the original stiffness matrix 
is identified by its position w.r.t. the diagonal element in the j'h column 
represented by IOU). Position of element in ilh row of this column (i ~j) 
is given by [ ID(j) - G-i) ]. 

Ex: Position ofk33 in the array {K} = 10(3) = 5 

Position ofkn in the array {K} = 10(3) - (3 - 2) = 5 - 1 = 4 

Position of~6 in the array {K} = 10(6) - (6 - 4) = 17 - 2 = 15 
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7 .5 AUTOMATIC MESH GENERATION 

One of the difficult tasks in the analysis of a component by finite element 

method is the need to discretise the component into a large number of elements 

connected by nodes and specitying the nodal coordinates as well as element 

connectivity. In most commercial software, this is done by the program from 

the description of the component geometry as a solid model either as a 

combination of some primitive shapes or through key points, lines connected by 

key points, areas connected by lines and volumes specified by the enclosing 

areas. Type of element (1-D truss, ] -D beam, Plane stress element, plate 

bending element, thick shell element, ... ) that the component closely matches in 

its behaviour, also needs to be specified by the user. 

An automatic mesh generation program generates the locations of the node 

points and elements, labels the nodes and elements and provides the element 

node connectivity relationships. A set of nodes is identified to represent the 

component, based on the relative dimensions of the component, choosing a 

minimum number of nodes across the smallest dimension, which varies with the 

software. In many programs, the user can also specity the minimum size of the 

elements to be generated and the ratio of sizes of adjacent elements, for 

generating mesh which varies from coarse to fine, in the areas of stress 

concentration. 

Two methods are explained here for forming elements, from the given set of 

nodes. 

In the Tessellation method, program starts connecting user defined nodes 

starting with an arbitrary point on the boundary. It creates a simplex element 

using the neighbouring nodes which give the least distorted element shape. 

Then, it proceeds to form the next element. An example of Tesselation method 

is given here. Fig. 7.7 (a) gives nodal set of a component while Fig. 7.7 (b), 

Fig. 7.7 (c) and Fig. 7.7 (d) show one simplex element formed by joining three 

nodes. The element in Fig. 7.7 (d) is the least distorted element and is 

finally selected before generating other elements (shown by dotted lines) in a 

similar way. 
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(c) (d) 

FIGURE 7.7 Mesh generation by Tessellation method 

In the Dctree method, a three dimensional cube is assumed around the 
object. If the object is partially occupied by the cube, it is subdivided into small 
cubes and each cube is checked. If any cube is full (completely occupied by the 
object) or empty, then the cube is not subdivided further. It gives elements of 
different sizes, irrespective of the stress distribution in the object and hence, is 
not very much popular. 

7.6 OPTIMUM MESH MODEL 

Best possible mesh has to be used to obtain solutions as accurately as possible, 
while minimising the requirement of computer resources. In many cases, it can 
not be decided before the analysis is completed. In time-dependent iterative 
problems, mesh refinement between different steps becomes very important to 
ensure convergence of the solution. There are many mesh refinement methods 
available. 

(a) Mesh refinement method or h-method - Refines the element size 
based on solution gradients. 

(b) Mesh movement method or r-method - Grid points are moved around 
(mesh redistribution) to provide clustering in certain regions, based on 
error indicators. 

(c) Mesh enrichment method or p-method - Refines degree of 
polynomial (interpolation function) based on user-specified error 
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tolerance. It is particularly important when singularities are encountered, 
such as near crack tips in fracture analysis. Side or interior nodes are not 
installed physically, but higher order modes of the polynomial 
corresponding to these nodes are combined with corner nodes by means 
of static condensation (similar to elimination of rows associated with 
DOFs corresponding to the specified nodal displacements), so that 
compatibility with adjacent elements is not affected. 

7.7 GAUSSIAN POINTS & NUMERICAL INTEGRATION 

Closed form solutions for integration, associated with many FEM problems, are 
not possible using digital computers. Hence, numerical integration is generally 
used in FEM. Integration of a simple function f(x) over the range (rI. r2) 
amounts to calculating area under the curve. In numerical' integration, this is 
approximated by the sum of areas of a few rectangles (products of functions 
values and the local range or weight) at a few sampling points as shown. This 
sum naturally approaches true value of the function area as the number of 
sampling points increase. Gauss quadrature method of numerical integration is 
proved to be the most useful in finite element applications. 

I n 

1= ff(r)dr=Lw i f(rJ with l:w, =1-(-1)=2 
-I i=1 

where WI is the "weight" or range associated with the ith sampling point and n is 
the number of sampling points within the element. 

For 

f(r) 

rl =0.0 I-point integration, 

2-point integration, 
1 

rJ, r2 = ± 0.5774 (or.± J3) 

3-point integration, r), r3 =:!; 0.7746 

r2 = 0.0 

WI =2.0 

wI. W3 = 0.5556 

W2 = 0.8889 
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4-point integration, rj, r4 = ± 0.8613 

r2, r3 = ± 0.34 

WI. W4 = 0.3479 

W2, W3 = 0.6521 

etc .. 

1----
X 

o 

In a similar way, for double integration involving two shape functions rand s, 

I I m n 

1= J Jf(r,s )dr ds == II w, W J f(r" sJ 
-1-1 1=1 J=I 

and for triple integration involving three shape functions r, sand t, 

1 1 1 I m n 

1= J J Jf(r,s,t)drdsdt== IIIwi Wj wk f(ri,Sj,t k) 
-\-1-1 i=1 j=1 k=1 

Since an arbitrary 2-D quadrilateral element is mapped into a square element 
and an arbitrary 3-D solid element is mapped into a cube in natural (non
dimensional) coordinate system, m = nand / = m = n are commonly used. 

(a) Integration in Natural coordinate system 

In terms of non-dimensional shape functions (area coordinates), 

1= J Jf(Lp L2, L3)dA == t wi f(L\, Li
2, L'3) 

A I~ 

(i) For n = 1 (3-noded triangle), Gaussian point of integration is at 
the center '0' of the triangle given by the coordinates LII = L21 = 
L3 1 = 1/3 with the associated weight WI = 1 

217 
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(ii) For n = 2 (6-noded triangle), Gaussian points of integration are at 
the mid-points of the three sides of the triangle given by the 
coordinates 

A 

and 

The associated weights are 

(c) For a quadrilateral, with two Gaussian points along each coordinate, 2 x 
2 points of integration are obtained by extrapolation of 1-0 two-point 
values to 2-D in natural coordinates 1; (± 0.5774) and TJ (± 0.5774) as : 

1 (-0.5774, -0.5774); 2 (+ 0.5774, -0.5774) 

3 (+0.5774,+0.5774) and 4 (-0.5774, + 0.5774) 

The associated weights with each point are Wi = Wj = 1.0 

i.e., the function value calculated at the above Gaussian points IS 

associated with a quarter of the square area. 

Similarly, with three Gaussian points along each coordinate, 3 x 3 
coordinates and weights are obtained as extensions of 1-0 three-point 
values 

1; = -0.7746 at points 1, 4, 7 with weights Wi = 0.5556 

= 0.0 at points 2, 5, 8 with weights Wi = 0.8889 

and = + 0.7746 at points 3,6,9 with weights Wi = 0.5556 
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Similarly, 

T) = -0.7746 at points 1,2,3 with weights w, = 0.5556 

= 0.0 at points 4, 5, 6 with weights Wi = 0.8889 

and = + 0.7746 at points 7, 8,9 with weights w, = 0.5556 

a!rr
11 

• 
4 3 

. . ~ 
I 2 

2 x 2 Gaussian integration points 

llt . 
~ 

. 
7 

I 
9 

4 5 6 
. . 
I 2 3 

3 x 3 Gaussian integration points 

In finite element method, displacement over an element is assumed by 
an algebraic polynomial and integration of terms of [8] matrix for 
evaluating element stiffness matrix is carried out term by term, each 
term being a product of different coordinates in various powers (in 

general, of the form IJ, .L~.l;k .L~. Some mathematicians have derived 

simple formulae for such integrations. 

(i) JL~.qdL=L p!q! 
L (P+q+l). 

Ex: 

(ii) 

Ex: 

J L J 2 L L( L2 dL=-; L( dL=-
L 6 L 3 

JJL~.Lq.L'k dA= 2A.p!q!r! 
A J (p+q+r+2). 

(FeJippa) 

JJ
L L L dA= 2A.l!.l!.l!= 2A =~ 

A ( 2 3 5! 120 60 
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(iii) 

Ex: 

JJL~ dA= 
2A.3!.0! .O! 2Ax6 A 

= --=-
A 

5! 120 10 

J JL~ dA= 
2A.2!.0!.0! 2Ax2 A 

= --=-
A 

4! 24 6 

JIrL~.L~.Uk.VJ dV = 6V p!q!r!s! (Clough) 
J' J (p+q+r+s+3)! 

v 

JIJL L L L dV = 6V I ! I ! 11 11 = 6V = ~ 
1 2 3 4 7! 5040 840 

v 

IJrL2 dV=6V2!0!0!0! =6Vx2=~ 
J I 5! 120 10 

v 

7.8 MODELLING TECHNIQUES 

Finite element method does not give a unique solution for any problem. The 
accuracy of solution depends on many aspects like modelling of the actual 
component, number and type of elements used, approximation of loads and 
boundary conditions, solution techniques, etc .. It is for this reason that design 
validation of products by the statutory safety codes of many countries is not 
based on FEM results. Therefore, the engineer who uses this method (or uses 
any general purpose software based on this method) should check for the 
correctness of the results with the expected trend Oat select locations. In this 
chapter, important aspects of modelling and boundary conditions are discussed. 

An element library is created, in each FEM based software, with each 
element assumed to have a particular type of deformation. Appropriate types of 
elements are selected to represent the component, based on the dimensions of 
the component in different directions as well as on the nature of deformation of 
the component. 

For example, if a component has very small dimensions in the transverse 
directions compared to its length, it can be modeled by I-D elements. In 
addition, these I-D elements may be treated as axial ioaded elements (truss 
elements or torsion elements), laterally loaded elements (beam elements or pipe 
elements), depending on how close behaviour of the component is to the 
behaviour assumed for these elements. It may be recalled that most of the 
trusses analysed do not have pin joints, but their resistance to bending. is 
negligible. A water tank, shown in Fig. 7.8, is an example of one dimensional 
idealisation when it is analysed for wind loads or seismic loads. In this case, 
nodal displacements normal to the axis alone are significant. Stresses aroun<l thp, 
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circumference at any particular section have to be obtained from beam theory 
(0 = M y / I), based on the bending moment obtained from this analysis and 
geometric properties at that section. 

I 
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FIGURE 7.8 Modelling of a water tank for dynamic analysis 

Similarfy, 2-D elements with very "mall thickness compared to the other two 
dimensions may be modeled with plane stress, plane strain, plate bending or 
thin shell elements depending on the shape of the component as well as the 
loads and boundary conditions applicable to the component. 

Component with equally significant dimensions in all the three directions 
can be modeled with 3-D solid elements or thick shell elements depending on 
whether the component is subjected to significant bending deformation or not. It 
may be noted that 3-D solid element wilt also have bending deformation 
included but of a lesser degree (usually first order) whereas shell element has a 



222 FINITE ELEMENT ANALYSIS 

more significant bending deformation (displacement modeled by a cubic 
polynomial) as well as restraining slopes independently (simple supports or 
fixed supports). 

The number of nodes and elements required for modelling a discrete 
structqre leave very little flexibility or ambiguity to the engineer. But, the 
number of nodes and elements used in the analysis of a continuum model leaves 
lot of flexibility to the analyst. The number of elements should be 
commensurate with the criticality of the component or the desired accuracy of 
results and is also dependent on the computer time and memory available for 
this analysis. A lot of work is done to assess whether using a large number of 
lower order elements is preferable or using a small number of higher order 
elements is preferable. In addition, aspect ratios and included angles of 2-D and 
3-D elements affect the results significantly. Their effect is demonstrated 
through the following two examples. Rigid guidelines applicable to all kinds of 
problems can NOT be specified. These examples are only meant to highlight 
dependence of results on various parameters. 

Example 7.1 

A simple beam subjected to bending moment is simulated through a varying 
load on the ends of a small rectangular plate. It is analysed, with the boundary 
conditions u = 0 at all nodes along x (neutral axis) and along y (symmetry) and 
v = 0 at the origin (for suppressing rigid body modes), using six different mesh 
models. Displacement u at A and v at B obtained using FEM are tabulated 
below. 

y 

y y 

~--~L-----~--~~X X 
Case I Case 2 
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y 

~--------~~----~X X 
Case 3 Case 4 

y y 

L-~~"-~~~~~~-'X X 
C~5 C~6 

Case 
Element Number of FEM Value I Exact Value 

type Nodes Elements u at A vat B 

1 CST 12 12 0.84 0.812 

2 CST 12 12 0.812 0.916 

3 CST 15 16 0.778 0.825 

4 CST 18 24 0.940 0.951 

5 CST 35 49 0.946 0.960 

6 LST 9 2 1.0 1.0 

Example 7.2 

A square plate in x-y plane simply supported on ail four sides and subjected to a 
uniformly distributed normal load p is analysed using plate bending elements. A 
quarter plate is modeled taking advantage of symmetry about x and y axes. The 
results obtained at the center of the plate (C) are tabulated below with 
quadrilateral elements (cases 1-3) and triangular elements (cases 4-7). 

223 
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y y 

~--~L---~~--~~X X 
Case 1 Case 2 

y 

""""-_____ ....;;:0,......::;.. __ ....... X X 

Case 3 Case 4 

y y 

L-~~'-~~~~~-+X X 
Case 5 Case 6 

Case-> 1 2 3 4 5 6 7 

Element type Quad Quad Quad Triangle Triangle Triangle Triangle 

No. of nodes 9 15 25 9 15 25 25 

No. of elements 4 8 16 8 16 32 32 

Displacement, w 1.07 1.045 1.02 0.966 0.989 0.995 0.996 

at C (FEM Value 

IExact Value) 

7.9 BOUNDARY CONDITIONS FOR CONTINUUM ANALYSIS 

Another important choice is to select the region of analysis. If the entire 
component is not modeled, care should be taken to apply suitable end 
conditions to simulate the true situation. For example, while analysing a nozzle 
between a cylindrical shell and a fluid pipe, axial load across the cross section 
due to fluid pressure need to be applied. Also, reasonable length of the 
component has to be included in the model around the region of geometric 
discontinuity to ensure that the results of analysis in the region of discontinuity 
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are not adversely influenced by the imposed end conditions. Some design codes 
indicate guidelines for the same. 

This aspect is explained through the example of a long cylindrical shell, such 
as a boiler drum, shown in Fig. 7.9. The cylindrical shell is made up of two 
parts with a circumferential joint and has a mismatch of radius of the two parts 
by 0 at the joint. This joint has been analysed to calculate the stresses generated 
due to this change of radius. Length of the cylinder considered on either side of 
the joint influences the stresses at the joint. Analyses carried out with three 
different models (L) have given th~e different results. The model in which 
uniform stresses are observed at the two ends is considered as the most 
appropriate, since stresses without this discontinuity are uniform along the 
length and the effect of any local discontinuity should vanish beyond some 
distance. 

14 L ~I Offset ~ L ---1 
TI ~ FiT 
R R+o 
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FIGURE 7.9 Effect of size of model around a discontinuity 
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(a) Symmetric boundary conditions 
In some components with one or more lines or planes of symmetry, 
modelling the entire component for analysis will result in waste of time 
without any additional information regarding displacements or stresses 
as compared to the analysis of a symmetric part of the component. 
Boundaries of this model along these lines/planes of symmetry are 
represented by a suitable boundary condition to indicate that the model 
is only a part of the component. Displacements of corresponding nodes 
on either side of the line of symmetry in the direction normal to the line 
of symmetry are equal and opposite. Hence, on nodes along the line of 
symmetry, displacement normal to the line of symmetry is zero. A 
rectangular plate with a circular hole at the center, shown in Fig. 7.10, 
is a typical example of symmetry along two lines and hence, only a 
quarter of the plate can be modeled for analysis, saving time and effort. 

y 

i 
! 

i 

------ ----- -0------- -- _--+x 

v = 0 at all points 
along this line 

i 
! 

i 
i 

Actual plate 

u = 0 at all points 
along this line 

I Symmetry about X-axis I Symmetry about Y-axis 

• ~. " .11 p .. n"~L---''---____ ....J1 
along this line " 

v = 0 at all points 
along this line 

Quarter plate model - Using symmetry about X and Y axes 

FIGURE 7.10 Symmetric boundary conditions 
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It should be noted that .\ymmetry should exist not only in the 
geometry of the component bllt also in the loads ami boundary 
C(}Iulitions of the component, so that results of one part of the 
component are applicable to the remaining parts of the component. A 
few such models, where symmetry can be used in modelling the 
component for analysis, are shown below. 

This aspect is explained through the example of arch of a factory gate, 
Fig. 7.11. One half of the arch about the vertical line of symmetry can 
be modeled, if the arch is analysed for a symmetric load such as self 
weight (Case-a). But the model will not be adequate if it is to be 
analysed for wind load, say from right to left (Case-b). 

Case (a) SymmetrIc arch with 
symmetric (gravity) load 

Case (b) Symmetric arch \\ 1Ih 
unsymmctnc (wind) load 

FIGURE 7.11 Dependence of model on geometry and loads 

Symmetry of a component to be analysed need not be limited to the 
coordinate axes. If an octagonal structure such as a chimney is to be 
analysed for 2-D heat conduction through its wall, symmetry can be 
lIsed to model just 11161h of the cross section as shown in Fig. 7.12. 

Actual geometry Model for analysis 

Figure 7.12 Model of a c~lmney for 2-D heat conduction 

(b) Cyclic or Sector symmetry 

In rotary components like turbines, fans, compressors, '" one sector 

covering hub, one blade and rim can be modeled and the boundary 

227 
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condition will be different from that of the symmetry boundary 

condition. Displacements of nodes along one boundary (A-A) of the 

sector in cylindrical coordinate system are equal to the displacements of 

corresponding nodes on the other end (B-B) of the sector. The example 

of a fan, shown in Fig. 7.13, explains the cyclic symmetry condition. 

" L_---;---1i Hub 

FIGURE 7.13 Cyclic symmetry of a fan 

7.10 TRANSITION ELEMENT 

The purpose of any analysis is to evaluate stresses at all points in a component 

when subjected to external or internal loads. Uniform mesh model is adequate 

when the stress variation in the component is small. However in areas of 

structural discontinuity or localised loads of high intensity such as thermal 

stresses during welding, uniform mesh model may not be appropriate. Such 

situations can be effectively modeled either by choosing fine mesh in the areas 

of high stress or by using higher degree displacement model for elements in the 

high stress areas. The latter option will require less computer memory and time. 

Compatibility conditions are not satisfied on the common edges if elements 

with linear displacement formulation (with 2 nodes along the common edge) are 

used on one side and elements with quadratic displacement formulation (with 

more than 2 nodes along the common edge) are used on the other side. 
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FIGURE 7.14 An example of a transition element 

Transition elements, satisfying inter-element compatibility along the 
common edges, are used to connect different types of elements. These elements 
will not have same number of nodes on all their edges. For example, a 
quadrilateral element I, shown in Fig. 7.14, connecting linear displacement 
elements 2, 3 and 4 with a quadratic displacement element 5 is one such 
transition element. Displacement polynomials 

u = al + a2 x + a3 Y + a4 x2 + a5l 

d - 2 2 an v - ~ + a7 x + as y + fu) x + alO Y 

are used for that element, ensuring symmetry w.r.t. coordinate axes x and y. In 
iso-parametric formulation, shape functions of this particular 5-node 
quadrilateral transition element are given by 

NI = ~(~-I)(I-11) 
4 

N2=~(~+I)(I-11) 
4 

N 3 = (~ + 1)(1 + 11) 
4 

N = (1- ~)(1 + 11) . 
4 4 ' 

We can have, in a similar way, transition quadrilateral elements with 6 or 
7 nodes depending on the displacement function used in elements 2, 3 and 

229 
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4 surrounding the transition element I. The terms in the displacement 
polynomial for each type of such elements will be different to ensure symmetry 

w.r.t. coordinate axes. The same logic can also be extended to other 2-D and 
3-D elements. Transition elements are not relevant for discrete structures. 

7.11 SUBSTRUCTURING OR SUPER ELEMENT ApPROACH 

In the finite element analysis of large systems, the number of equations to be 

solved for an accurate solution will be very large. Computational cost of matrix 
inversion is proportional to cube of the order of stiffness matrix. Thus, it is 
cheaper to invert three square matrices of order 500 than inverting one square 
matrix of order 1500. It also reduces computer memory requirement, since all 
substructures are not si~ultaneously processed. Method of substructures can' be 
used to reduce the number of equations. In this method, the structure is divided 
into a number of parts, called substructures or super elements, each of which 
can be subdivided into a large number of elements. Each substructure is treated 
as one large element with many interior and boundary nodes. Assembled 
stiffness matrix of a substructure is rearranged to group displacements of all 
boundary nodes (elements with suffix 'b') and displacements of internal nodes 

(elements with suffix 'i') separately. Using static condensation procedure. this 
stiffness matrix is reduced to include modified contributions of boundary nodes 
only, depending on the type of elements being used, as explained below. 

From the first set of equations [KII ] {u,} + [K,b] {Ub} = {P,}, we can express 
{U,} as 

{u,} = [K,ir l 
({ P,} - [K,b] {Ub}) 

Substituting these values of {u,} in the 2nd set of equations 

[Kb,]{u,} + [Kbb]{Ub} = {Pb}, 

we get [Kbl][Kllr l 
( {P,} - [K,b] rUb} ) + [Kbb]{Ub}= {Pb} 

or 

This can be written in a different notation as [K*] rUb} = {po} 

where [K*] is the condensed stiffness matrix of the substructure, including 
OOFs associated with boundary nodes only 

and {po} is the corresponding modified load vector. 
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This process of condensation is carried out, in many software, by Gauss 
elimination procedure. These reduced matrices of different substructures can be 
assembled together to get the stiffness matrix of the complete structure. The 
remaining procedure of applying boundary conditions and solving for the 
unknown displacements and stresses is same. There can be many levels of 
substructures, the highest level substructure consisting of ordinary finite 
elements only. 

A typical application of this procedure can be seen in the case of an aircraft, 
where fuselage (central body), nfain wings, tail wings, etc .. are meshed as 
independent substructures. They are assembled together, after static 
condensation of the stiffness matrix of each substructure, to analyse the entire 
aircraft structure for the specific loads. This method saves considerable time and 
memory of the computer. 

7.1.2 DEFORMED AND UNDEFORMED PLOTS 

One problem with FEM is the generation of a large output conslstmg of 
displacement at all nodes and in alI active degrees of freedom. It is difficult to 
scan for useful values from this large output to arrive at any meaningful 
conclusion. To overcome this difficulty, many general purpose software include 
options for plotting deformed shape as well as iso-stress and iso-temperature 
contours. Deformed shape of the compoftent is better appreciated when the 
same is superimposed on undeformed geometry, with or without node/element 
numbers. Data errors related to load direction and area of application as well as 
boundary conditions are often checked with these deformed plots. 

Within the elastic limit, the displacements in a component are so small that 
the deformed and undeformed plots coincide. Hence, nodal displacements are 
usually multiplied by a factor so that maximum displacement at any point in the 
element is about 20% of the component size or about 1 cm on A-4 size plot. 
Thus, deformed plot forms a vital check on the analysis of the component, to 
assess whether the results are sensible and meaningful or not. Deformed plot is 
qualitative and not quantitative, since physical dimensions of the component 
and nodal displacements are not plotted to the same scale. 

Another visual anomaly is in the deformation of frames. Plots are generated 
by the post processor of the software from the nodal displacements obtained in 
the solution phase. Thus, the deformed plot of a beam member is a straight line, 
generated trom its two nodal displacements, irrespective of the end conditions 
(simply supported or fixed ends). Cubic displacement polynomial as welI as end 
conditions on slope are not reflected in these plots. (Ref. Fig. 7.15)., 
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------------------------ ~ 

(a) With ~all1pk' '1II'POJts (b) With fixed supports 

FIGURE 7.15 Plot of deformation of beam 

Note : Plots of defonnation of beam between nodes 1 & 3 as well as between 

2 and 3 in both the cases of end conditions are linear even through both of them 

are cubic functions. Even the displacement value at node 3 appears to be of the 

same magnitude in both cases, though the calculated values are different. 

7.13 SUMMARY 

• Consistent loads, based on energy equivalence, are used in FEM to 

represent distributed loads and give better results than equivalent loads 

• Nodes, forming elements, are numbered to minimise maximum node 
number difference in the elements. This affects bandwidth of assembled 

stiffness matrix 

• Many Software, based on FEM, store one half of banded, symmetric 
stiffness and mass matrices to minimise computer memory requirement 

• Modelling a physical problem involves selection of proper types of 

elements, from the element library of any commercial software, which 
assume same displacement behaviour as the actual problem. Details, with 

zero or less influence on the results, can be omitted to simplifY the 

physical model while ensuring a meaningful analysis with minImum 

computer cost 

• Shape and size of elements influence the results significantly 

• Use of symmetry in geometry, loads and boundary conditions help in 
modelling a smaller part of the component, saving computer time and 

memory 

• Substructuring helps in the analysis of very large components by 

reducing size of matrices 

• Defonnation plots in many FEM software are qualitative (with magnified 

displacements), plotting only displacements without indicating correct 

slopes. 
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OBJECTIVE QUESTIONS 

I. A symmetric structure can be analysed by modelling one symmetric part 

(a) depending on applied loads 

(b) depending on boundary conditions 

(c) always yes 

(d) depending on applied loads & boundary conditions 

2. Anti-symmetric boundary condition along an edge of a 2-D structure 
implies, applied loads are __ on either side of the edge 

(a) opposite (b) equal 

(c) equal and opposite (d) unrelated 

3. Sector symmetry boundary condition implies __ along two radial 
edges of the sector 

(a) same radial displacements in cartesian coordinate system 

(b) same circumferential displacements in cylindrical coordinate 
system 

(c) equal and opposite radial displacements in cartesian coordinate 
system 

(d) equal and opposite circumferential displacements in cylindrical 
coordinate system 

4. Cyclic symmetry boundary condition implies __ along two edges of 
the sector 

(a) same radial displacements in cartesian coordinate system 

(b) same circumferential displacements in cylindrical coordinate 
system 

(c) equal & opposite radial displacements in cartesian coordinate 
system 

(d) equal and opposite circumferential displacements in cylindrical 
coordinate system 

5. An octagonal section chimney with hot gases inside can be analysed 
using _ model 

(a) full section (b) one half of section 

(c) one quarter of section (d) lISth of section 
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6. Use of non-dimensional coordinates helps in 

(a) numerical integration (b) displacement calculation 

(c) stress calculation (d) strain calculation 

7. Gaussian points are used for 

(a) numerical integration (b) displacement calculation 

(c) stress calculation (d) strain calculation 

8. Quadrature means 

(a) calculation of area of element 

(b) calculation of element stress 

(c) numerical integration for getting stiffness coefficients 

(d) calculation of nodal displacements 

9. Accuracy of stiffness matrix improves with 

(a) more number of Gaussian points 

(b) more number of nodes 

(c) size of elements 

(d) shape of elements 

10. Sector symmetry and cyclic symmetry differ 

(a) in the shape of sector edges 

(b) in the size of sector edges 

(c) in radial displacements along two sector edges 

(d) in circumferential displacements along two sector edge!> 

II. Using symmetry condition __ ; but gives same solution 

(a) saves computer time 

(b) saves computer memory 

(c) saves effort of data preparation 

(d) all of them 

12. Symmetry boundary condition about an edge is applicable when 

(a) normal loads & normal displacements at nodes along the edge are 
zero 

(b) loads & displacements along the edge are zero 

(c) normal loads & normal displacements at nodes on either side of the 
edge are equal & opposite 

(d) loads & displacements along the edge are same 
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13. A cantilever beam can be analysed as a plate with __ boundary 
conditions 

(a) Cartesian symmetric (b) sector symmetry 

(c) cye! ic symmetry (d) cartesian anti-symmetric 

14. Number ofDOF for 2-node cantilever and propped cantilever are 

(a) 1,2 (b) 2,1 (c) 3,4 (d) 2,4 

15. Number of DOF for 3-noded simply supported beam and fixed beam are 

(a) 1,2 (b) ~,3 (c) 3,4 (d) 4,2 

16. Small region of interest in a big component can be analysed using free 
body end conditions 

(a) always true (b) sometimes true 

(c) never true (d) depends on other data 

17. _ model of a rectangular plate with a circular hole at the center, and 
loaded uniformly along the four edges, is adequate for analysis 

(a) full (b) 1/2 (c) 1/4 (d) 1/8 

18. _ model of a square plate with a circular hole at the center, and loaded 
uniformly along the four edges, is adequate for analysis 

(a) full (b) 112 (c) 1/4 (d) 1/8 

19. _ model of a square plate with a rectangular hole at the center (edges 
parallel to the edges of the plate), and loaded uniformly along the four 
edges, is adequate for analysis 

(a) full (b) 1/2 (c) If4 (d) 1/8 

20. In statically equivalent loads, free end moment of a cantilever of length 
'L' with uniformly distributed load of value 'p' is 

(a) pL2/4 (b) pL2/8 (c) pL2/12 (d) pL2116 

21. In consistent loads, free end moment of a cantilever of length 'L' with 
uniformly distributed load of value 'p' is 

(a) pL2/4 (b) pL2/8 (c) pL2112 (d) pL2116 

22. In statically equivalent loads, end moment of a simply supported beam of 
length 'L' with a concentrated load 'P' at the mid point is 

(a) PLl4 (b) PLl8 (c) PLlI2 (d) PLl16 
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23. In consistent loads, end moment of a simply supported beam of length 'L' 
with a concentrated load 'P' at the mid point is 

(a) PLl4 (b) PLl8 (c) PLlI2 (d) PLlI6 

24. In statically equivalent loads, end moment of a simply supported beam of 
length 'L' with a uniformly distributed load of value 'p' is 

(a) pL2/4 (b) pL2/8 (c) pL2/12 Cd) pL2/16 

25. In consistent loads, end moment ofa simply supported beam of length 'L' 
with a uniformly distributed load of value 'p' is 

(a) pe/4 (b) pL2/8 (c) pL2/12 (d) pL2//16 

26. Consistent loads for a LST element with uniform pressure 'p' along an 
edge of length' L' , at the two end nodes and mid-node are 

(a) pLl2, pLl2, 0 (b) pL/3, pLl3, pLl3 

(c) pLl4, pLl4, pLl2 (d) pLl6, pLl6, 2pLl3 

27. The process of reducing number of mid-side or internal nodes before 
assembling element stiffness matrices is called 

(a) Gauss reduction (b) Jacobi reduction 

(c) Choleski reduction (d) static condensation 

28. Lengths of longest side and shortest side of a 2-D or 3-D element decide 
the 

(a) aspect ratio 

(b) shape function 

(c) order of displacement polynomial 

(d) included angle 

29. Number of nodes along the side ofa 2-D or 3-D element decide the 

(a) aspect ratio 

(b) shape function 

(c) order of displacement polynomial 

(d) nature of deformation 



CHAPTER 8 

DYNAMIC ANAL YSIS 
(UNDAMPED FREE VIBRATION) 

Dynamics is a special branch of mechanics where inertia of accelerating masses 
must be considered in the force-deflection relationships. In order to describe 
motion of the mass system, a component with distributed mass is approximated 
by a finite number of mass points. Knowledge of certain principles of dynamics 
is essential to the formulation of these equations. 

Every structure is associated with certain frequencies and mode shapes of 
free vibration (without continuous application of load), based on the distribution 
of mass and stiffuess in the structure. Any time-dependent external load acting 
on the structure, whose frequency matches with the natural frequencies of the 
structure, causes resonance and produces large displacements leading to failure 
of the structure. Calculation of natural frequencies and mode shapes is therefore 
very important. 

Consider ilh mass m, of a system of connected rigid bodies and the force 
components Fj G = 1,2, .. 6) acting upon it in three-dimensional space. If the mass 
mj is in equilibrium at rest, then l:fj = 0 . 

If mass mJ is not in equilibrium, it will accelerate in accordance with 
Newton's second law i.e., F· = m· ii. J 1 J 

The force (-mj.liJ) is called the reversed effective force or inertia force. 
According to D' Alembert's principle, the net external force and the inertia 
force together keep the body in a state of 'fictitious equilibrium' 
i.e., L(FJ - m ii J= 0 . 

If the displacement of the mass mj is represented by oUJ G = 1,2, .. 6), then the 
virtual work done by these force components on the mass mj in equilibrium is 
given by 
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D' Alembert's principle rewritten in the form, 

8Wi = L Fj . 8uj - L (m iij) . 8uJ = 0 is a statement of virtual work 
for a .~ystem in motion. 

For a simple spring of stiffness 'k' and a lumped mass 'm' under steady state 
undamped condition of oscillation without external force, the force equilibrium 
condition of the system is given by 

k u(t) + m li(t) = 0, 

where, F, = - k u(t) is the reactive elastic force applied to the mass. 

Displacement in vibration is a simple harmonic motion and can be 
represented by a sinusoidal function of time as 

u(t) = u sin rot 

where, ro is the frequency of vibration in radians/sec 

It is more often expressed in 'f cycles/sec or Hertz (Hz) where ro = 21t f 

Then, velocity u(t)= ---(ou cos rot 

and acceleration tl(t) = ---(0
2u sin rot = ---(0

2u(t) 

K.u(t) + m OCt) = (k - ro2m) u(t) = 0 

In general, for a system with on' degrees of freedom, stiffness 'k' and mass 
'm' are represented by stiffness matrix [K] and mass matrix [M] respectively. 

Then, ([K] - ro2 [M]) {u} = {O} 

or ([Mrl[K] - ro2 [I]) {u} = {O} 

Here, [M] is the mass matrix of the entire structure and is of the same order, 
say n x n, as the stiffness matrix [K]. This is also obtained by assembling 
element mass matrices in a manner exactly identical to assembling element 
stiffness matrices. The mass matrix is obtained by two different approaches, as 
explained subsequently. 

This is a typical eigenvalue problem, with ro2 as eigenvalues and {u} as 
eigenvectors. A structure with 'n' DOF will therefore have 'n' eigenvalues and 

'n' eigenvectors. Some eigenvalues may be repeated and some eigenvalues may 
be complex, in pairs. The equation can be represented in the standard form, 
[A]{xL = A, {xL. In dynamic analysis, ro, indicates ith natural frequency and {Xli 
indicates ith natural mode of vibration. A natural mode is a qualitative plot of 
nodal displacements. In every natural mode of vibration, all the points on the 

component will reach their maximum values at the same time and will pass 
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through zero displacements at the same time. Thus, in a particular mode, all the 
points of a component will vibrate with the same frequency and their relative 
displacements are indicated by the components of the corresponding 
eigenvector. These relative (or proportional) displacements at different points 
on structure remain same at every time instant for undamped free vibration 
(Ref. Fig. 8.1). Hence, without loss of generality, {u(t)} can be written as {u}. 

~I"L-~_--I_+-____ ":::""'=-_______ ~ 
t=t l t=t2 t=t l t=t2 ~ 

FIGURE 8.1 Mode shape 

Since {u} = {O} forms a trivial solution, the homogeneous sy~tem of 
equations ( [A] - A, [I] ) {u} = {O}gives a non-trivial solution only when 

([A]-A,[I])= {O}, 

which implies Det ( [A] -),[1] ) = o. 
This expression, called characteristic equation, results in nth order 

polynomial in A, and will therefore have n roots. For each ~, the corresponding 
eigenvector {u}. can be obtained ITom the n homogeneous equations 
represented by ([K] - A, [M]) {u} = {O}. The mode shape represented by {u(t)} 
gives relatives values of displacements in various degrees of freedom. 

It can also be represented as 

[A][X] = [X][A] 

where, [A] = [Mrl [K] 

[X] is called the modal matrix, whose ith column represents ith eigenvector 
{Xli 

and [A] is called the spectral matrix with each diagonal element 
representing one eigenvalue, corresponding to the eigenvector of that column, 
and off-diagonal elements equal to zero. 

8.1 NORMALISATION OF EIGENVECTORS 

The equation of motion of free vibrations ([K] - 00
2 [M]) {u} = {O} is a system 

of homogeneous equations (right side vector zero) and hence does not give 
unique numerical solution. Mode shape is a set of relative displacements in 
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various degrees of freedom, while the structure is vibrating in a particular 
frequency and is usually expressed in normalised form, by following one of the 
three normalisation methods explained here. 

(a) The maximum value of anyone component of the eigenvector is 
equated to 'I' and, so, all other components will have a value less than 
or equal to ' I ' . 

(b) The length of the vector is equated to 'I ' and values of all components 
are divided by the length of this vector so that each component will have 
a value less than or equal to 'I'. 

(c) The eigenvectors are usually normalised so that 

{uhT [M] {uh = I and {uhT [K] {uh = AI 

For a positive definite symmetric stiffness matrix of size n x n, the 
eigenvalues are all real and eigenvectors are orthogonal 

i.e., {u}IT[M] {uh=O and {u}jT[K] {u}j=O \;f i:;t:j 

8.2 MODELLING FOR DYNAMIC ANALYSIS 

Solution for any dynamic analysis is an iterative process and, hence, is time -
consuming. Geometric model of the structure for dynamic analysis can be 
significantly simplified, giving higher priority for proper representation of 
distributed mass. An example of a simplified model of a water storage tank is 
shown in Fig. 8.2, representing the central hollow shaft by long beam elements 
and water tanks at two levels by a few lumped masses and short beam elements 
of larger moment of inertia. 

8.3 MASS MATRIX 

Mass matrix [M] differs from the stiffness matrix in many ways: 

(i) The mass of each element is equally distributed at all the nodes of that 
element 

(ii) Mass, being a scalar quantity, has !!!!!!.£ effect along the three 
translational degrees of freedom (u, v and w) and is not shared 

(iii) Mass, being a scalar quantity, is not influenced by the local or global 
coordinate system. Hence, no transformation matrix is used for 
converting mass matrix from element (or local) coordinate system to 
structural (or global) coordinate system. 
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FIGURE 8.2 Finite Element Model of a water tank for dynamic analysis 

Two different approaches of evaluating mass matrix [M] are commonly 
considered. 

(a) Lumped mass matrix 
Total mass of the element is assumed equally distributed at all the nodes 
of the element in each of the translational degrees of freedom. Lumped 
mass is not used for rotational degrees of freedom. Off-diagonal 
elements of this matrix are all zero. This assumption excludes dynamic 

24:1 
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coupling that exists between different nodal displacements. Lumped 
mass matrices [M] of some elements are given here. 

Lumped mass matrix of truss element with 1 translational DOF per 
node along its local X-axis 

[M]= PAL[I 0] 
201 

Lumped mass matrix of plane truss element in a 2-D plane with 
2 translational DOF per node (Displacements along X and Y coordinate 
axes) 

I 000 

o 0 [M]= pAL 0 
200 I o 

000 

Please note that the same lumped mass is considered in each 
translational degree of freedom (without proportional sharing of mass 
between them) at each node. 

Lumped mass matrix of a beam element in X-V plane, with its axis 
along x-axis and with two DOF per node (deflection along Y axis and 
slope about Z axis) is given below. Lumped mass is not considered in 
the rotational degrees of freedom. 

I 0 0 0 

o 0 0 0 [M]= pAL 
2 0 0 I 0 

o 0 o 0 

Note that lumped mass terms are not included in 2nd and 4th rows, as 
well as columns corresponding to_rotational degrees of freedom. 

Lumped mass matrix of a CST element with 2 DOF per node. In this 
case, irrespective of the shape of the element, mass is assumed equally 
distributed at the three nodes. It is distributed equally in all DOF at each 
node, without any sharing of mass between different DOF 

0 0 0 0 0 

0 1 0 0 0 0 

[M]= pAL 0 0 1 0 0 0 

3 0 0 0 1 0 0 

0 0 0 0 0 

0 0 0 0 0 
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(b) Consistenttnass matrix 

Element mass matrix is calculated here, consistent with the assumed 
displacement field or element stiffness matrix. [M] is a banded matrix of 
the same order as the stiffness matrix. This is evaluated using the same 
interpolating functions which are used for approximating displacement 
field over the element. It yields more accurate results but with more 
computational cost. Consistent mass matrices of some elements are 
given here. 

Consistent mass matrix of a Truss element along its axis (in local coordinate 
system) 

where, 

and 

Here, 

{u} T = [u v] 

[Nf = [NI N2] 

NI = (I-I;) 
2 

N2 = (1+1;) 
2 

T L T 

[M]= fiN]p[N] dV= fA[N]p[N] 
v 0 

+1 

dx= fAp[N][NY (detJ)(dx/dl;}d1; 
-I 

and dx = dx .dl; = det J d~ = (~) d~ 
dl; 2 

Using the values of integration in natural coordinate system, 
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= PAL[8/3 4/3]= PAL[2 21] 
8 4/3 8/3 6 1 

Con.dstent mas.~ matrix (if a Plane Tr"ss element, inclined to global X-axis -
Same clements of I-D mass matrix are repeated in two dimen~ions (along X and 
Y directions) without sharing mass between them. Mass terms in X and Y 
directions are uncoupled. 

201 0 

[M]= pAL 0 2 0 
6 1 0 2 0 

002 

Consistent mass mqt,.ix of a Space Tr"ss element, inclined to X-V plane) -
Same elements of 1-0 mass matrix are repeated in three dimensions (along X, Y 
and Z directions) without sharing mass between them. 

2 0 0 0 0 

0 2 0 0 1 0 

[M]= pAL 0 0 2 0 0 1 

6 0 0 2 0 0 

0 1 0 0 2 0 

0 0 0 0 2 

Cmui.~tent mass matrix of a Beam element 

[M]=PA(~) f{H}T {H}d~ with Hermite shape functions {H} as used in a 

beam element. 

2(2 -3~ +~3) 
L(1 - ~ + ~ 2 + ~ 3 ) x 

2(2 + 3~ _ ~3) 
L(-1-~+~2 +~3) 

pAL 
= 

]28 

[2(2-3S+s3) L(]-S-S2 +S3) 2(2+3S-S3
) 

r 156 
22L 54 -13L 

= pAL 22L 4L2 13L -3L2 

420 54 13L ]56 -22L 

L- 13L -3L2 -22L 4L2 
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Consistent mass matrix of a CST element in a 2-D plane 

[NY =[N) 0 
o N) 

N2 0 N3 0] 
o N2 0 N3 

[M]= fiN]p[N]T dV =t fiN]P[N]T dA 

2 0 I 0 1 0 

2 0 1 0 1 

ptA 2 0 1 0 
= 

12 2 0 1 

Sym 2 0 

2 

Note: Natural frequencies obtained using lumped mass matrix are LOWER 

than exact values. 

Example 8.1 : Find the natural frequencies of longitudinal vibrations of the 

unconstrained stepped shaft of areas A and 2A and of equal lengths (L), as 

shown below. 

2A A 

I" L L ~I 

Solution : Let the finite element model of the shaft be represented by 3 nodes 

and 2 truss elements (as only longitudinal vibrations are being considered) as 

shown below. 

CD 
2 

[KL =(2A)(~)[_: -:]=( A~)[_~ 
[K]2 =( ALE)[_~ -:] 

3 

-2]. 
2 ' 



246 FINITE ELEMENT ANAL YSIS 

Using consistent mass matrix approach 

[M] = p(2A )L [2 I] = pAL [4 2] 
I 6 12 624; 

[M]2 = P~L [ ~ ~ ] 
Assembling the element stiffness and mass matrices, 

[K]= :E[_~ -~ -~l 
o -I d 

2 0] 
6 1 

1 2 

Eigenvalues of the equation ([K] - 002 [M] ) {u} = {O} are the roots of the 
characteristic equation represented by 

2AEIL-00
2

4ppALI -2AEIL-002 2ppALI 0 , 

2AEIL-002 2ppALI 3AEIL-0026ppALI -IAEIL-002pALI =0 

o - AEIL-002pALl6 AEIL-002 2ppAL 

Multiplying all the terms by (LlAE) and substituting J3= pI3oo
2 

6E 

2(1-2J3) -2(1+J3) O! 
-2(1+J3) 3(1-2J3) -(I+J3 =0 

o -(1 + J3} (1-2J3) 

or 18 ~ (~ - 2) (1 - 2~) = 0 

The roots of this equation are ~ = 0, 2 or ~ or 002 = 0 12E or 3E 
2 ' pL2 pL2 

Corresponding eigenvectors are obtained from ( [K] - 002 [M] ) {u} = {O} for 

different values of 002 as [1 1 f for J3 = 0, [I 0 _2]T for J3 = ~ and 
2 

[I -\ 1]TforJ3=2. 

The first eigenvector implies rigid body motion of the shaft. One component 
(u I in this example) is equated to '1' and other displacement components 
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(U2 and U3 in this example) are obtained as ratios w.r.t. that component, 
following one method of normalisation. Alternatively, they may also be 
expressed in other normalised forms. 

Note: Static solution for such an unconstrained bar, with rigid body motion, 
involves a singular [K] matrix and can not be solved for {u}, while dynamic 
analysis is mathematically possible. 

Example 8.2 

Find the natural frequencies of longitudinal vibrations of the same stepped shaft 
of areas A and 2A and of equal lengths (L), when it is constrained at one end, as 
shown below. 

2A A J 

L L 

Solution 

Let the finite element model of the shaft be represented by 3 nodes and 2 truss 
elements (as only longitudinal vibrations are heing considered) as shown below. 

1 [0 2 0 3 

[K]I=(2~E)[_~ -~]=(~~)[_~ -~] 

[K]2=(ALE)[_~ -~] 
Using consistent mass matrix approach 

[M] = P(2A)L[2 1]= PAL[4 2] 
I 6 12 624; 

Assembling the element stiffness and mass matrices, 

[Kl<EH ~~ -1 [Ml~p~L[~ ! ~j 
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After applying boundary condition at node I, I SI row and I SI column of the 
assembled matrix can be deleted. Eigenvalues of the equation ( [K] - 0/ [M] ) 
{u} = {O} are the roots of the characteristic equation represented by 

3AEIL-0026pALI6 -AEIL-002pALI6 =0 

- AEI L - 002 pALl 6 AEI L - 002 2pALl6 

Multiplying all the terms by (LI AE) and substituting 13 = pL
2

oo
2 

6E 

or 

1

3(1- 213) -(1+13~_0 
-(1+13) (1- 213)1-

11 ~2 - 14~ + 2 = 0 

The roots of this equation are ~ = 0.164, 1.109 or 002 = 0.98~ E or 6.654 E 
pL pL2 

Corresponding eigenvectors are obtained from ([K] - 002 [M]) {u} = {O} for 
different values of 002 as [0 1 1.732]T. . 

Example 8.3 

Find the natural frequencies of longitudinal vibrations of the constrained 
stepped shaft of areas A and 2A and of equal lengths (L), as shown below. 
Compare the results obtained using lumped mass matrix approach and 
consistent mass matrix approach. 

Solution 

Let the finite element model of the shaft be represented by 3 nodes and 2 truss 
elements (as only longitudinal vibrations are being considered) as shown below. 

::; 
::; ::; ;:; 2A A ::; ::;:: 

~ 
:-::: L -\ .. L -\ /" 

2 3 
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[K]I = ( 2~E )[ _ ~ - ~] = ( ALE)[ _ ~ - ~ ] 

[K]2 =(ALE)[ _~ -~] 
(a) Using lumped mass matrix approach 

[M] = P(2A)L[1 0]= PAL[2 0] 
1201202; 

Assembling the element stiffness and mass matrices, 

[K]=ALE -2 3 -1 ; [M]=P~L 0 3 0 
[ 

2 - 2 OJ [2 0 OJ 

o -I 1 0 0 1 

Application of boundary condition (node 1 constrained) eliminates row 
1 and column I, thus reducing the size of stiffness and mass matrices to 
2 x 2. Eigenvalues of the equation ([K] - (02 [MD {u} = {O} are the 
roots of the characteristic equation represented by 

3AEI L - (02 3pALI 2 

-AE/L 
-AE/L =0 

AEI L - (02 pALl 2 

Multiplying all the terms by (LlAE) and substituting f3= pe(02 
2E 

1

3(1-f3) -I 1=0 
-I (1-f3) 

or 3 f32 - 6 f3 + 2 = 0 

Th f h· . (.l-_ (3 ± v'3) or 0.423, 1.577 e roots 0 t IS equation are I-' 
3 

Corresponding eigenvectors are [0 -0.57734 I]T for f3 = 1.577 

and [0 0.57734 I]T for f3 = 0.423 

(b) Using consistent mass matrix approach 

[M]I=P(2~)L[~ ~]=P~L[~ ~] 



250 FINITE ELEMENT ANAL YSIS 

Assembling the element stiffness and mass matrices, 

l2 -2 01 [4 
[K]= ALE -2 3 -I ; [M]= P~L 2 

o -1 1 0 

2 01 6 1 

1 2 

Application of boundary condition (node 1 constrained) eliminates row 
1 and column 1, thus reducing the size of stiffness and mass matrices to 
2 x 2. Eigenvalues of the equation ( [K] - o} [M] ) {u} = {O} are the 
roots of the characteristic equation represented by 

3AE/L-ro2 6pALl6 -AE/L-ro2pALl6 =0 

-AE/L-ro2pALl6 AE/L-ro2 2pALl6 

Multiplying all the terms by (L/AE) and substituting /3= pL
2

ro
2 

6E 

1

3{! - 2/3) - (1 + 13~ - 0 
-(1+/3) (1-2/3)1-

or 11 ~2 - 14 ~ + 2 = 0 

The roots of this equation are 13= (7 ± 3.J3) or 
11 

l.10874, 0.16399 

Corresponding eigenvectors are [0 -0.57734 I]T for 13 = 1.577 

and [0 0.57734 1 f for /3 = 0.423 

Note : Natural frequencies obtained with lumped mass matrices are 
LOWER than those obtained with consistent mass matrices, while the mode 
shapes are practically same. 

Example 8.4 

Find the natural frequencies of vibrations of a simple cantilever beam. 
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Solution 

Let the finite element model of the beam be represented by 2 nodes and I beam 
element to facilitate manual calculation. After applying boundary conditions, 

[K]=(~!)[ _I:L ~~~} [M]=( ~~)[ _I~:L -42~L] 
Eigenvalues of the equation ([K] - (j} [MD {u} = {O} are the roots of 

where 

I 
12a - 78~ - 6La + II L~ = 0 

-6La + IIL~ 4L2a - 2L2~ 

EI 
a=-3 and 

L 

or 35p2·-204ap+12a2=0 

2a 202a 
The roots of this equation are ~ = - or 

35 35 

2 12EI 1212EI 
(0 =-- or 

pAL4 pAL4 
or 

Corresponding eigenvectors are [ 0.983 1.36/L]T for ~ = 2 a 
35 

and [1.006 7.716/L]T for p = 202 a 
35 

8.4 SUMMARY 

• A distributed mass system will have as many natural frequencies and 
mode shapes as the number of OOF, 'n'. 

• Free undamped vibrations involve a set of n homogeneous equations. 
Such equations will not give a unique solution. A mode shape consists of 
relative displacement values at (n-l) OOF, obtained w.r.t. the chosen 
displacement value at one OaF. The mode shapes (eigen vectors) are 
usually normalised. 

• The n natural frequencies may be real or complex (in pairs). Some of 
them may be zero (indicating rigid body mode) or repeated. 

• Only first few frequencies (lower values) are significant and are usually 
calculated by iterative methods. Hence, a coarse mesh is adequate for 
dynamic analysis. 
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• They can be calculated using lumped mass matrix or consistent mass 
matrix, based on shape functions used for assumed displacement field. 
Each element of mass matrix of an element represents scalar mass, 
associated with a particular DOF and no transformation is involved 
between element (local) coordinate system and structure (global) 
coordinate system unlike stiffness matrix of vector elements. 

• Lumped mass matrix is diagonal; has no components in the rotational 
DOF; mass of element is equally distributed at all the nodes of the 
element, irrespective of shape of the element; same mass at a node is 
taken along all translational OOF at the node and not shared in fractions. 

• Consistent mass matrix is square, symmetric and banded, just like 
stiffness matrix. 

OBJECTIVE QUESTIONS 

1. An unconstrained 3-D frame with 4 nodes has 
frequencies 

number of zero 

(a) (b) 2 (c) 3 (d) 6 

2. A frequency of value _ indicates rigid body motion along one dof 

(a) zero (b) (c) infinity (d) less than zero 

3. Principal modes of vibration of a multi-dof system are 

(a) parallel (b) orthogonal 

(c) integer multiples (d) fractional multiples 

4. With lumped mass matrix, the differential equation of vibration refers to 

(a) elastic coupling (b) inertia coupling 

(c) mode superposition (d) both inertia and elastic coupling 

5. With consistent mass matrix, the differential equation of vibration refers 
to 

(a) elastic coupling (b) inertia coupling 

(c) mode superposition (d) both inertia and elastic coupling 

6. Normalising eigenvector w.r.t. mass matrix is useful in 

(a) mode superposition (b) evaluating natural frequencies 

(c) frequency response (d) damped vibrations 
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7. An unconstrained 2-D frame with 4 nodes has number of zero 
frequencies 

(a) (b) 2 (c) 3 (d) 6 

8. A 4-noded cantilever gives _ number of frequencies 

(a) 3 (b) 4 (c) 6 (d) 9 

9. A 3-noded simply supported beam gives _ number of frequencies 

(a) 3 (b) 4 (c) 5 (d) 7 

10. A natural mode of vibration represents _ at each node 

(a) absolute displacements 

(b) relative displacements 

(c) proportional displacements 

(d) absolute strain. 



A
Typewritten Text
"This page is Intentionally Left Blank"



CHAPTER 9 

STEADY STATE HEAT 
CONDUCTION 

Application of FEM is not limited to structural analysis. Availability of faster 
computers with large memory have facilitated in generalising mathematical 
concepts involved in finite element analysis and applying them to many 
different engineering fields. It is now possible to use the same finite element 
model of the component for steady state as well as transient thermal analysis, 
structural analysis due to static loads as well as dynamic loads etc. 

The major difference between structural analysis and thermal analysis by 
FEM is in the number of unknowns. While in a structural analysis, the primary 
unknowns are vector displacement components ranging from 1 to 6 at any node 
in the model depending on the type of component and loads, thermal analysis 
deals with a single unknown, scalar temperature, at every node in the model. 

In many practical situations, thermal load as well as mechanical loads will be 
simultaneously acting on a component. It is to be understood that thermal 
expansion of a component induces stresses only when the expansion is 
partially or completely constrained. 

9.1 GOVERNING EQUATION 

In Cartesian coordinates • 
Consider a small element (a cube of dimensions dx, dy and dz) in a solid body. 
The energy balance during time 'dt' can be stated by, 

Heat inflow + Heat generated = Heat outflow + Change in internal energy 
(qx + qy + qz) dt + q (dx dy dz) dt 

= (qX+dX + qY+dY + qZ+dZ) dt + pCp dT (dx dy dz) 
or [(qx - qX+dX) + (qy - qy t dY) + (qz - qZ+dZ)] dt + q (dx dy dz) dt 

= pCp dT (dx dy dz) 
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where, 

and 

k = Thennal conductivity 

Cp = Specific heat at constant pressure 

p = Mass density 

Considering heat flow through the body along X-direction and using 

Fourier's law of heat conduction q = -k.A( ::) along each direction, 

qx+dx = qx + (a:: ) dx 

= qx -(!)[ kx Ax (:)]dX 
= qx - ( !) [ k x ( :) ] dx dy dz 

or (qx - qX+dX) dt = (a/ax) [kx (aT/ax)] dx dy dz dt 

Considering similar expressions for qY+dY and qZ+dZ and dividing all tenns 
by dx dy dz dt 

For a homogeneous material, kx = ky = kz = k and hence 

~; + :; + ~; +(i)=(p~p )(~)=(~)(~) 
where, a = ~ is called thennal diffusivity 

pCp 

••••. (9.1) 

For the steady state condition, the time differential on the right hand side 
becomes zero. 

Then, 

a
2
T + a

2
T + a

2
T + (.9.) = 0 

ax2 ay2 az2 k 
••••• (9.2) 

i.e., k V2T + q = V . (-k VT) + q = 0 •••• (9.3) 

where, 
2 a2T a2T a2T 

VT=-+-+-
ax2 ay2 az2 

for 3-D heat conduction 

a2T a2T 
=-+-

ax2 ay2 for 2-D heat conduction 
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= for 1-0 heat conduction 
dx 2 

Laplace equation V2T = 0 is a particular case of steady state problem when 
q=O 

Helmholtz equation 

In general, a static field variable problem in terms of the unknown scalar 

function 8 can be represented by Helmholtz equation, given by 

a.( OO} a ( 00) a ( OO) - k - +- k - +- k - +A.8+q=O ax Xax ay Yay az zaz 

This equation represents steady state heat conduction problem when 8 

represents nodal temperature; kx , ky and kz are thermal conductivities of the 
material along x, y and z directions; A. = 0 and q is the heat source or sink. The 

equation can then be written as 

~(k aT}+~(k aT}+~(k aT}+q =0 ax x ax ay y az az z az 

Boundary conditions associated with a thermal analysis are: 

• Specified temperature T = To 

• Specified heat flux (insulated boundary) q = 0 

• Convection heat transfer 

(on fluid solid interface) 

In Cylindrical coordinate system 

(at x = XI) 

(atx=xJ) 

(at x = Xk) 

In the case of solids of revolution, eq. (9.1) can be used more conveniently in 

cylindrical coordinates (r, 8, z coordinates) as given below 

.... (9.4) 

9.2 I-D HEAT CONDUCTION 

In this case, temperature is considered along the length of a rod or thickness of 
wall representing the direction of heat flow through conduction. Therefore, 
temperature is a function of only one linear dimension, x. Heat conduction in 
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the other two directions is neglected. Steady state equation with no heat source 
then reduces to 

dq=d
2
T =0 

dx dx 2 

where, heat flux q = -k( ::) is the Fourier's law with -ve sign indicating 

reduction of temperature with increasing x. 

The geometric model consists of 2-noded elements with heat conduction 
along the element. Such problems are broadly categorised into three types, 
depending on the possibility of convection heat transfer along the length of the 
element. 

9.2.1. HEAT CONDUCTION THROUGH A WALL 

In this case, conduction across the wall thickness through unit area of cross 
section is considered and the waIl is assumed to have very large dimensions in 
the other two directions. On the two surfaces of the wall, specified temperature 
or specified convective heat transfer from the ambient fluid medium form the 
boundary conditions. 

Using the iso-parametric method of derivation of element stiffness matrix, 
we can now obtain thermal conductivity matrix, designated as [KT], for an 
element of length L between nodes I and 2. A comparison of the method of 
deriving element stiffness matrix and element conductivity matrix for a 1-0 
element is given below for better appreciation. 

Thermal conductivity matrix, Stiffness matrix, 

[KTI [KI 

Q/A = q = -k (dT/dx) PIA = a = E (duldx) 

T(S) = N) T) + N2 T2 = [N]T {T} u(S) = N) u) + N2 U2 = [Nf {q} 

dT/dx = [BT]T {T} du/dx = [B]T {q} 

dx = (L/2) dS dx = (L/2) dS 

N)= (I - S)/2; N2= (I + S)/2 N)= (1 - S)/2; N2= (1 + S)/2 

[KT] = f [BTf k [BT] (L/2)dS [K] = f [Bf E [B] A (L/2) dS 

= k [ 1 
L -1 

-;] = AE[ 1 
L -1 

-;] 
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For a 2-element model (Ref. Figure 9.1), 

Element - I Element - 2 

T, ---+~ Heat flow 

FIGURE 9.1 1-0 heat conduction through a wall 

Temperature T at any point in the element is defined by T = [N] {Te} 

where [N] are the shape functions, as used for displacement function 

and {Te} is the nodal temperature vector 

:: =(:~)(::) 
=(d[NY).{TJ 2 

d~ (X2 - XI) 

= ( ~ )[- 1 1]. {Te} 

= [BTl {Te} 

where [BT]=(~).[-1 1] 

Element conductivity matrix, 

Since 
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and 
dx XI X 2 L 
-=--+-=--
dl; 2 2 2 

-k [ 1 -1] 
[KT 1 = L -1 1 

QL +1 QL {I} 
Element heat rate vector, {RT t = 2 }N r dl; = 2 I 

Assembling conductivity matrices and heat vectors of all the elements of a 
structure, 

[KTJ {T} = {R} 

Similar to the assembled stiffness matrix, assembled conductivity matrix is 
also symmetric, banded and singular. Number of these equations is reduced by 
applying boundary conditions, as detailed below, and the equations are solved 
for the unknown nodal temperatures. 

(i) Specified temperature r* (at node m) 

• Penalty approach: A large value C = max (KI J) x 104 is added to the 
mth diagonal element (in the mth row and mth column) of the 
conductivity matrix [KTJ. In addition, C x T* is added to the element 
in mth row of {R} 

• Elimination method: Kj m x T* is added to the ith element of {R}, 
where 'i' ranges from I to total number of rows. In addition, mth row 
and mth column of the conductivity matrix [KTJ and heat vector {R} 
are deleted. 

(ii) Specified convection heat transfer from ambient fluid 

q = h (T m - Too) from node 'm' to the ambient medium at Too 

The film coefficient value 'h' is added to the element in the mth row and 
mth column of the conductivity matrix and the value h Too is added to the 
mth element of {R}. 

Example 9.1 

Consider a brick wall of thickness 0.3 m, k = 0.7 W/m OK. The inner surface is 
at 28°C and the outer surface is exposed to cold air at -15°C. The heat transfer 
coefficient associated with the outside surface is 40 W/m2 OK. Determine the 
steady state temperature distribution within the wall and also the heat flux 
through the wall. Use two elements and obtain the solution. 
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Solution 

Considering a two-element model across half the thickness as shown, heat 
conduction matrix of the two elements is obtained as 

ill 2 rn 3~ 
----=::....---- x ----=::....---- convection 

where 

,\ssembled conductivity matrix is obtained by adding corresponding terms 
as, 

[ 
1 -1 0] 

[KT ] = 1; -1 1 + 1 - 1 

o -1 1 

We have 2 boundary conditions of constant temperature T\ = 28 DC and 
convection at free end (node 3) with heat flow q given by 

q = h (T3- Ta,). = 40 [T3 - (-15)] = 40 T3 + 600 

To include these effects, 40 T3 is added on the left side while - 600 and 
contribution of T \ are added on the right side. 

Using these conditions, we get modified relations for the 2 unknown 
temperatures as 

Solving them, we get T2 = 7.68 DC and T3 =-12.63 DC 

Heat flow Q can be calculated from the first equation as 

Check: 

Q=(~)(T\ -T2 )=C34 )(28-7.68 )=94.83 W/m
2 

Q = (~ )(T2 - T3 )=C34 ) [7.68-(-12.63)]=94.78 W/m2 

Q = h(T3 - To)= 40[(-12.63)- (-15)]=94.8 W/m2 
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Example 9.2 

A composite slab consists of three materials with thermal conductivities of 20 
W/m oK, 30 W/m oK, 50 W/m oK and thicknesses 0.3 m, 0.15 m and 0.15 m 
respectively. The outer surface is at 20 DC and the inner surface is exposed to 
the convective heat transfer coefficient of25 W/m2 oK and a medium at 800 DC. 
Determine the temperature distribution within the wall. 

Solution 

Since the plate can be considered infinite, heat transfer can be assumed to be 
one-dimensional across the thickness. Heat conduction matrices of the three 
elements covering the three materials are obtained as 

x 
23m 4 Free 

----- x ----- convection 
2 

where kl =~=~= 66.7 W IOC 
L 0.3 

k 30 
k2 =-=-=200=66.7x3 W IOC 

L 0.]5 

k3 =~=~=333=66.7x5 W IOC 
L 0.15 

The equations after assembling conductivity matrix and heat vector are 
obtained by adding corresponding terms as, 

[KT] {T} = {R} 

-1 0 --0 TI 0 

-1 1+3 -3 0 T2 0 
Or 66.7 = 

0 -;3 3+5 -5 T3 0 

0 0 -5 5 T4 0 

We have 2 boundary conditions of constant temperature T4 = 20 DC and 
convection at free end (node I) with heat flow q given by 

q= h (T1 - Tx,). = 25 (TI - 800) = 25 TI - 20000 

= 66.7 x 0.375 TI - 20000 
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Penalty method of applying boundary conditions 

C = max (K1j ) x 104 = 66.7 x (3 + 5) x 104 = 66.7 x 80000 

Then 

1 +0.375 -1 0 0 T) 20000 

-1 1+3 -3 0 T2 0 
66.7 

0 -3 3+5 -5 T3 0 

0 0 -5 5+80000 T4 66.7 x 80000 x 20 

Solving them, we get T) = 304.6 °C; T2 = 119°C; T3 = 57.1 °C; T4 = 20°C. 

Elimination method of applying boundary conditions 

To include the effect of boundary conditions, 25 TJ is added on the left side 
while 20000 and contribution ofT4 are added on the right side. 

Using these conditions, we get modified relations for the 3 unknown 
temperatures as 

[

1 + 0.375 

66.7 -1 

o 
-~ _~l{~:} ={ 20~00 } 

- 3 8 J T3 5 T4 x 66.7 

Simplifying, we get 

[

1.375 -1 0j{TJ }_{300} 
-1 4 -3 T2 - 0 

o -3 8 T3 100 

or T) = 304.6 °C 

T2 = 119°C 

T3 = 57.14 °c 

Example 9.3 

Heat is generated in a large plate (K = 0.4 W/m 0c) at the rate of 5000 W/m3 

The plate is 20 cm thick. Outside surface of the plate is exposed to ambient air 
at 30°C with a convective heat transfer coefficient of 20 W 1m2 0c. Determine 
the temperature distribution in the wall. 

Solution 

Since heat transfer through convection takes place on both the sides of the plate, 
half the plate can be considered for analysis with the mid-plane as the plane of 
symmetry. Heat transfer can be assumed to be one-dimensional across the 
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thickness while the other dimensions of the plate can be considered infinite. 
Considering a two-element model across half the thickness as shown, heat 
conduction matrix and heat generation vector of the two elements are obtail1ed 
for unit area of cross section. 

Line of ~f-I ___ -=[TI=I =--___ ~ ____ rn_2 ____ 3 Free 
Symmetty convection 

where k k 0.4 /oC 
\=-=( )=8W L 5 x 1 0-2 

Assembled conductivity matrix is obtained by adding corresponding terms 
as, 

r 
8 -8 OJ 

[K]= -8 8+8 -8 

o -8 8 

The nodal load vector consists of heat generation and is given by 

{R\}={R2}=(;L ){:}={:~~} 

Since QL = 5000 x (5 x 10-
2
) = 125 W 

2 2 

We have the boundary condition of convection at free end (node 3) with heat 
flow q given by 

q = h (T3-Too) = 20 (T3 - 30) = 20 T3 -600 

To include this effect, 20 T3 is added on the left side while 600 is added on 
the right side. 

Using these conditions, we get modified relations for the 3 unknown 
temperatures as 

r 
8 -8 0j{T\} { 125} - 8 8 + 8 - 8 T2 = 125 + 125 

o - 8 8 + 20 T3 125 + 600 
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Caution: Previous type of check on nodal temperatures, based on heat 
conducted through different elements, is not applicable here, since the quantity 
of heat flowing through node-l is increased by generation of heat between 
nodes I and 2 and so heat entering 2nd element at node-2 will be more. Similar 
inequality exists between heat flowing through node-2 and node-3. 

Example 9.4 

A composite bar of 3 different materials, rigidly fixed at both the ends, is 
subjected to a uniform temperature rise of 80°C. In addition, axial loads are 
applied at two points on the bar as shown. Determine the displacements, 
stresses and support reactions. 

Solution 

The finite element model of this problem consists of 3 axial loaded elements as 
shown. 

co 
60 kN ~ __ [I]_2_-.!..::!...~---QJ_3 -------B 

Section-l Section-2 Section-3 

Material Bronze Aluminium Steel 

Area of cross section (mm2
) 2400 1200 600 

Length (mm) 800 600 400 
Modulus of elasticity(GPa) 83 70 200 
Coefficient of thermal 18.9 x 10-6 23 x 10-6 11.7 x 10-6 

expansion ( / 0c) 

I' 
OJ 2 

• x 
60kN 

--.t--~~ 
75kN ~ 

Stiffness matrices of elements 1,2 and 3 (connected by nodes 1 & 2; 2 & 3 
and 3 & 4 respectively) are given by, 

where k\ =AjEj =2400x83xl0
3 

=249xl03 

Lj 800 

265 
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k2=A2E2 =1200x70x10
3 

=140x103 
L2 600 

k - A3 E3 600x200xlO
3 

=300x103 
3 - L 400 

3 

and 

Assembled stiffness matrix is obtained by adding corresponding terms as, 

k, -kl 0 0 

[K]= 
-k, k, + k2 - k2 0 

0 - k2 k2 + k~ - k3 

0 0 - k3 k3 

249 -249 0 0 

= 103 -249 249 + 140 -140 0 

0 -140 140 + 300 -300 

0 0 -300 300 

The nodal load vector consists of loads applied at nodes 2 and 3 as well as 
loads due to constrained expansion. These loads are calculated for each element 
based on thermal expansion of that element. 

Load in element I 

= AI EI UI ~T = 2400 x 83 x 103 x 18.9 x 10-t> x 80 = 301.2 kN 

Load in element 2 

= A2E2u2~T= 1200 x 70 x 103 x 23 x 10-t> x 80 = 154.6 kN 

Load in element 3 

= A3 E3 U3 ~T = 600 x 200 x 103 x 11.7 x IO-t> x 80 = 112.3 kN 

Direction of load at the ends of each element should result in expansion of 
the element. At nodes 2 and 3, mechanical load also should be added to the 
thermal load from elements on either side. 

Load-displacement relations can thus be written now as 

249 -249 0 0 ul -301.2+ RI 

103 -249 389 -140 0 U2 = 103 301.2-154.6-60 

0 -140 440 -300 u3 154.6 -112.3 -75 

0 0 -300 300 u4 1123.+R4 
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Applying the condition that nodes 1 and 4 are fixed and hence displacements 

at these nodes are zero, load-displacement relations corresponding to the 

unknown displacements U2 and U3 can be written as 

[ 
389 -140] {u 2 } ={301.2 -154.6 -60} 

-140 440 1I3 154.6-112.3-75 

Solving these two simultaneous equations, we get 

tl2 = 0.222 mm and 

U3 = -0.0012 mm 

Reactions can be calculated from the two deleted equations 

u, 

[
249 ,- 249 0 0] u2 

o 0 -300 300 u3 

= {-301.2+R,} 
112.3+R4 

Therefore. R, = 245 kN and R4 = -111.9 kN 

Stresses in the elements, 

0, = E,t, = E, [B,] {q} '-2 

3[ I 1 J{ 0 } =83xl0 -- -
800 800 0.222 

= 22.62 N/mm2 

02 = E2t2 = E2 [B2] {qh3 

3 [1 1 J { 0.222 } =70xl0 -- -
600 600 - 0.0012 

= -26.04 N/mm2 

03 = E3t 3 = E3 [B3] {qh-4 

= 200 x 103 [ __ 1_ _I_J {- 0.00 12} 
400 400 0 

= 0.6 N/mm2 

Check: L F = 0 or R, + ~ + P2 + P3 = 245 - 111.9 - 60 - 75 ~ 0 
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9.2.2 HEAT TRANSFER THROUGH A FIN 

A fin is of finite lateral dimensions (Fig. 9.2), unlike infinite lateral dimensions 
of a wall. A rod of small cross sectional area, an axi-symmetric plate around the 
periphery of an I.C. engine cylinder with heat flow in the radial direction and a 
flat plate with its ends across the width insulated can be analysed as 1-0 fins. 
The heat transfer is essentially 1-0 heat conduction along the length with heat 
loss through its periphery. Equations relating heat flow to nodal temperatures 
will therefore include additional matrix of convection heat transfer to represent 
heat flow Q through periphery of each element. This convection matrix [H] is a 
function of variable temperature over the element, which can be expressed in 
terms of nodal temperatures using shape functions, and is a square symmetric 
matrix of the same order as [Kr]. It forms the first (unknown) part 'h. T' of 
convective heat transfer h (T-Ta) where Ta is the ambient temperature, while the 
known second part 'h Ta' is added to the heat flux vector on the right side of the 
equation ([Kr]+[HD {T} = {R}. 

-t--+---.Heat flow 
direction 

Insulated edge 

_I- Finite plate with _~ 
insulated edges 

Insulated edge 

FIGURE 9.2 Different models of heat transfer by conduction and convection 

where, [Kr] = (k t ) [ _ ~ -~] 

{R}=(Ph~ooL ){a 
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L ()2 R 2 2] since Jh l-~ Pdx=hP l-~+; dx 
o L 0 L L 

[
x-x2 X3]L hPL 

= h P -L-+ 3L2 0 = 3 

where, P is the perimeter of the cross section of the element or fin 

and A = Area of cross section of fin 

The coefficients of [KT], [H] and {R} can all be divided by A. These 

coefficients are thus modified respectively to ~, PhL and PhTooL in some 
L 6A 2A 

books. 

For a fin of rectangular cross section of width 'w' and thickness 't', 
(Ref. Fig. 9.3) 

P = 2 (w + t);:::: 2 w; A = w.t 

Then PIA;:::: 2/t 

For afin of circular section of radius 'r' 

P = 21t r; A = 1t ~ and PIA = 2 I r 

For a tapered fin of length 'L' and rectangular cross section, 

( ) 
{AJ -AJx 

A x = A + --'---''----'--
I L 
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where P, and PJ are the perimeters at nodes I and J 

/ ... :......,.:..-Fin 

\ / @P A 
FIGURE 9.3 Rectangular and circular section fins 

Following the same procedure as earlier explained and integrating the terms, 
we get 

-I]; [H] = (~)[3PI + PJ 

1 12 P, + PJ 

where, 

and 

Example 9.5 

A metallic fin, with thermal conductivity 360 W/m oK, 0.1 cm thick and 10 cm 
long extends from a plane wall whose temperature is 235°C. Determine the 
temperature distribution along the fin if heat is transferred to ambient air at 
20°C with heat transfer coefficient of 9 W 1m2 OK. Take width of the fin as 1 m. 

Solution 

Neglecting temperature variation across thickness as well as along tI.<J.1 width, 
conduction can be considered along the length of the fin only while heat loss 
through convection takes place around the periphery. of the flat fin. Thus, using 
I-D model, heat conduction and heat convection matrices of the three elements 
are obtained as 

[] 2 I] 3 [] 4 
----=--- x -----"=----- x ---=---- Free 

convection 
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For each element, L =.2.:.!. m 
3 

~=.~=10800 
L (0.1/3) 

hL= 9(0.113)=100 
3t 3xO.001 

hTooL =9x20x (0.1/3) =6000 
t 0.001 

Assembling the element matrices, we get ([K] + [H] ) {T} = {R} 

or 

1 -1 0 0 

-1 1 + 1 -1 0 
10800 

0 -1 1+1 -1 

0 0 -1 

2 

1 2+2 
+100 

0 1 

0 0 

1 + 1 
=6000 

1 + 1 

1 

0 0 TI 

1 0 T2 

2+2 T3 

1 2 T4 

Substituting the boundary condition of constant temperature TI = 235°C 

and dividing throughout by 100, we get 

l220 -107 OJ {T2} {120+107T1} 
- 107 220 - 1 07 T3 = 120 

o -107 110 T4 60 
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Solving these equations, we get 

T2 = 207.35 DC; T3 = 190.2 °C and T4 = 185.6 °C 

Caution: Previous type of check on nodal temperatures, based on heat 
conducted through different elements, is not applicable here, since part of the 
heat entering the fin through node-I is lost through convection between nodes 1 
and 2 and so heat entering 2nd element at node-2 will be less. Similar inequality 
exists between heat entering node-2 and node-3. 

Example 9.6 

A metallic fin, with thermal conductivity 70 W/m oK, 1 cm radius and 5 cm 
long extends from a plane wall whose temperature is 140°C. Determine the 
temperature distribution along the fin if heat is transferred to ambient air a1 
20°C with heat transfer coefficient of 5 W 1m2 OK. Take two elements along the 
fin. 

Solution 

Neglecting temperature variation across the cross section of the fin, conduction 
can be considered along the length of the fin only while heat loss through 
convection takes place around the periphery of the round fin. Thus, using 1-0 
model, heat conduction and heat convection matrices of the two elements are 
obtained as 

I] 2 111 3 ----=--- x -----==----- Free 

[K T ]= \A [_; -;] 

[H]= Ph L [2 1] 
6 1 2 

{R}= Ph:ooL {;} 

For each element, L = 0.05 = 0.025 m 
2 

convection 

~ = 70 >d 0-2 x 1t X (0.01)2 = 8.8 X 10-3 
L 0.025 

PhL =1tx(0.01)x5xI0-4 x 0.025 =13.1xI0-8 
6 6 
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PhT",L =21tx(0.0I)x5xI0-4 x20x 0.025 =785.7xI0-8 
2 2 

Assembling the element matrices, we get ([KT] + [H]) {T} = {R} 

or 

(88 X I0 3 1+{-1 
-I 

I + I 
-1 

Substituting the given boundary condition of constant temperature 
TI = 140 DC and dividing throughout by 10-3, we get 

[
17.6 -8.8]{T2 } { 1232} 

- 8.8 17.6 T3 - 0.00786 

Solving these equations, we get 

T2 = 93.3 DC and T3 = 46.67 DC. 

9.3 2-D HEAT CONDUCTION IN A PLATE 

Heat conduction through a finite plate needs a 2-D model for estimating 
temperatures at various points. Temperature variation across the thickness of a 
thin plate at any location is negligible and hence 2-D heat transfer is assumed. 
Similar to 2-D structural analysis, we use iso-parametric triangular elements for 
this analysis. 

Temperature field within a triangular element is given by 

T=NITI+N2T2+N3T3 = ~TI+11T2+(l-~-11)T3 

and x=N I XI +N2X2+N3X3 = ~XI +11X2+(1-~-11)X3 

Y = N I Yl + N2 Y2 + N3 Y3 = ~ Yl + 11 )'2 + (I - ~ -11) Y3 

{
Of / a~} = [X13 Y13] {Of / ax} = [J 1 {Of / ax} where YIJ = Y,- YJ 
aT / Or! X23 Y23 aT / ay Of / ay and xlJ = X,- xJ 

or {aT/ax} = [Jjl {aT/a~}=_1 [Y23 
Of/ay Of/8TJ Det J - X23 -~:3 ][~ ~ =:]H:} 
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1 [Y23 Y31 Y12]{~~}=[B]{Tel 
= Oet J X 32 x\3 X 21 

T3 

where, [B]=_I_[Y23 Y31 Y12] 
OetJ x32 x13 x21 

and [KT] = k A [B]T [B] 

Convection along any edge I-J, [H]= h L'_J [2 1] 
612 

Example 9.7 

Two dimensional simplex elements have been used for modelling a heated flat 
plate. The (x, y) coordinates of nodes i, j and k of an interior element are given 
by (5,4), (8,6) and (4,8) respectively. If the nodal temperatures are found to be 
Ti = 110°C, Tj= 70°C and Tk = 130°C, find 

(i) the temperature gradients inside the element and 

(ii) the temperature at point P located at (xp, yp) = (6,5) 

Solution 

A triangular element will have three natural or non-dimensional coordinates Nj, 
NJ and Nk such that Nl + Nj + Nk = 1 or Nk= 1-Nl- NJ 

(a) Temperature gradient inside the element is given by 

[ J{T} 
{
aT/Ox}=_I_ Yjk Ylo YiJ ~. 
aT/ay Oet J x kj Xki x ij T: 

{
1l0} 1 6-8 8-4 4-6 

=-- 70 
DetJ [4-8 5-4 8-5] 130 
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{

IIO} =~[-2 4 -2] 70 
14 -4 I 3 

130 

since Det J = X,k YJk - XJk Y,k = (5 - 4) (6 - 8) - (8 - 4) (4 - 8) = 14 

{~~: } = C ~ ) {- 2~~} 
(b) To find out temperature at point (xp, Yp), the shape functions (N" NJ, Nk) 

of that point are calculated .as given below. 

Xp = N, x, + NJ xJ + Nk Xk = N, x, + NJ xJ + (1 - N, - NJ) Xk 

6 = 5 N, + 8 NJ + 4 (1 - N,- NJ) 

= 4 + N, + 4 Nj or N, + 4 NJ = 2 

Similarly, yp = N, y, + NJ YJ + Nk Yk = N, y, + NJ YJ + (l - ,N,- NJ)Yk 

5 = 4 N, + 6 NJ-+ 8 (I - N,- NJ) 

= 8 - 4 N, - 2 NJ or 4 N, + 2 NJ = 3 

which give N =.±. N =-~. N =~ 
, 7' J 14' k 14 

Then temperature at (xp, yp) is given by 

T p = N, T, + NJ TJ +Nk T k 

9.4 SUMMARY 

=( ~ )(11O)+C~)(70)+C~)(130) 
(880+350+ 130) 

14 

• Many engineering problems involve stresses due to change in 
temperature of the component or surrounding fluid : 1-0 conduction 
problem through composite walls and fins; and 2-D conduction problems 
through plates. 

• To solve for nodal temperature of a finite element model, element 
conductivity matrix (due to conduction within the component) is calculated 
for steady state problems, in the same way as element stiffness matrix. 
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The problem may also involve convection on the boundary or periphery 
with the ambient fluid. 

• Thermal problems and stress analysis probiems can be solved with the 
same finitt: dement model, same distribution of nodes and elements in 
the compollt:nt; Thermal problem involves only one nodal unknown 
temperature unlike I to 6 nodal OOF in structural analysis and hence size 
of the assembled matrix is smaller. 

• Thermal problems deal with scalar temperature as the nodal unknowns 
and, hence, do not require transformation of element matrices from 
element (local) coordinate system to structure (global) coordinate system. 

• Transient problems are solved in multiple time steps by iterative methods 
and accuracy depends on the selected time step duration. 

OBJECTIVE QUESTIONS 

1. Conductance matrix is the equivalent of stiffness matrix in 

(a) thermal analysis (b) dynamic analysis 

(c) fluid flow analysis (d) static structural analysis 

2. problem is solved through iterative method 

(a) 

(c) 

transient thermal (b) steady state thermal 

structure with thermal loads (d) static structural analysis 

3. No. ofOOF for a 4-noded quadrilateral thermal element is 

(a) 4 (b) 8 (c) 12 (d) 16 

4. No. of OOF for a 3-noded triangular thermal element is 

(a) 3 (b) 6 (c) 9 (d) 12 

5. No. of DOF for a 6-noded triangular thermal element is 

(a) 3 (b) 6 (c) 9 (d) 12 

6. No. of OOF for a 4-noded tetrahedran thermal element is 

(a) 4 (b) 8 (c) 12 (d) 16 

7. No. ofDOF for a 8-noded quadrilateral thermal element is 

(a) 4 (b) 8 (c) 12 (d) 16 

8. No. ofDOF per node in a triangular thermal element is 

(a) (b) 2 (c) 3 (d) 4 

9. No. ofOOF per node in a quadr, lateral thermal element is 

(a) (b) 2 (c) 3 (d) 4 



C 1-1 APT E R 10 

DESIGN VALIDA TION AND 

OTHER TYPES OF 

ANALYSIS 

10.1 COMPLIANCE WITH DESIGN CODES 

Every component may not be analysed for displacements and stresses under the 
influence of external applied loads. Standard components like bearings, springs, 
bolts, .. are selected from design data books or manufacturer's catalogues. 
However, when components are to be manufactured to meet specific needs of 
customers, they need to be analysed. If the equipment in operation pose danger 
to the people working or living around those equipment, design of all 
components have to satisfy prescribed design (safety) codes. Different countries 
prescribe different design codes for equipment working in their countries. One 
of the most popular codes is Boiler & Pressure Vessel Code (Section VIII) for 
pressure vessels such as boiler drum, steam or gas turbine, valves, heat 
exchanger, condenser,... formulated by American Society of Mechanical 
Engineers (ASME). This code or its modified version is followed in many 
countries. 

Many theories have been proposed to explain failure of components when 
SUbjected to external loads, based on maximum normal stress"maximum shear 
stress, maximum strain, maximum strain energy, maximum distortion energy 
etc .. ASME code is based on the most conservative theory i.e., maximum shear 
stress theory. According to this, a component fails when the maximum shear 
stress at any point exceeds prescribed limit for the particular material at the 
temperature of operation. 

Limiting values of all materials are usually based on the values obtained 
from uni-axial tensile test. As explained in chapter-3, this specimen is subjected 
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to tensile stress ax along its length by the application of a tensile load. Its other 
stress components ay and 'txy are equal to zero. By recording the elongation 
corresponding to different values of load P, until the specimen breaks, yield 
stress (Sy), maximum tensile stress (St), maximum elastic strain, maximum 
plastic strain and modulus of elasticity (E) are calculated. These values are 
tabulated in the code for each material, at different temperatures. To obtain 
material property value at any other intermediate temperature, linear 
interpolation is carried out from the values at the nearest lower temperature and 
nearest higher temperature. 

ASME code defines stress intensity, Sm = min (2S/3, S/3) for comparison 
with the maximum shear stress in the component, with built-in factor of safety. 
In the uni-axial tensile test, using Mohr's circle, we get maximum shear stress 
'tmax = Sm/2. Maximum shear stress at any point in the component is equal to 
half of the difference between algebraically largest (a]) and algebraically 
smallest (a2) principal normal stresses. 

(a]-a2)/2<Sm/2 or Pm<Sm 

Thus, stress intensity (P) is defined as twice the maximum shear stress. 
Different components of stress intensity are calculated, as detailed below, from 
the three normal stresses and three shear stresses at each point of a component. 
Assuming that the magnitudes of stress components vary across the cross 
section of any component, mean stress is defined as the membrane stress while 
the varying part is defined as the bending stress. Stress intensity P calculated 
from the membrane part of the six stress components is called membrane stress 
intensity Pm while the maximum stress intensity calculated from the bending 
part (observed on the outermost layers) is called bending stress intensity Pb. 
These are checked against different limits as given below, 

Pm < Sm and Pm ± Pb < 1.5 Sm 

The reason behind specitying two different limits for these components can 
be easily understood from the following logic (Refer Fig.l 0.1). In the case of 
membrane stress, equal stress at every point in the cross-section will lead to 
simultaneous failure of the entire cross-section. In the case of bending stress, 
stress varies linearly throughout the cross-section. If the maximum bending 
stress exceeds the allowable limit, only the outer layer yields without failure of 
the entire cross section. As the load increases, more and more outer layers start 
yielding. Finally, at a particular load, the entire cross-section will reach the 
same stress value, in opposite directions in the top and bottom layers. Thus, the 
cross-section can withstand larger load in bending mode and hence the 
allowable limit can be more. 
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FIGURE 10.1 Varying influence of membrane and bending stresses across 
thIckness 

The membrane stress is again classified as general membrane stress (Pm) 
applicable over a large area of the component and local membrane stress (Pd 
applicable near the areas of structural discontinuity or stress concentration. Here 
again local yielding results in readjustment of stresses without causing failure of 
the entire component and thus a higher load can be sustained. 

So, PL < 1.5 Son 

and ••••• (10.1) 

In some components, stress variation across the cross section may not be 
linear. In such cases, total stress is considered as the slim of membrane stress, 
bending stress and peak stress (Q). Peak stress is not considered in design 
checks. It influences only fatigue and creep damages. 

Then, 

and 

Pm ± Pb + Q < 3 Sm 

PL ± Pb + Q < 3 Son ..... (10.2) 

All the above checks, in addition to checks related to fatigue failure or creep 
failure wherever applicable, have to be satisfied for validating design of any 
product. Output oranv FEM software includes stresses at various points ora 
product while code check is based on stresses across some typical cross 
sections or the product. Hence, the six components of stresses (3 normal 
stresses and 3 shear stresses) obtained from Finite element analysis at every 
node point in a continuum structure need to be categorised considering their 
variation across each critical cross section into membrane (uniform), 
bending(/inearly varying) and peak stress (non-linear part) components for 
validating the design by such codes. Stress categorisation procedure varies 
with relevant code. An example oftypical stress classification line (A-B) across 
the thickness of a shell-nozzle junction and categorisation of total stress across 
the thickness into membrane, bending and peak stress components is shown in 
Fig.l0.2 
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Nozzle axis 

t 
A~---

(J 

FIGURE 10.2 Categorisation of Stresses across thickness 

The procedure is summarised below. 

• Each of the six stress components calculated by the software in Cartesian 
coordinate system is categorised into membrane, bending and peak stress 
values. 

• Principal normal stresses O"J, 0"2 and 0"3 are calculated separately from the 
six stress components o"x, O"y, o"z, 'txy, 'tyz and 'tzx belonging to membrane, 
bending and peak categories in a 3-D stress analysis. 

• Principal normal stresses O"J, 0"2 and 0"3 are calculated from the four stress 
components·O"x, O"y, o"z (hoop) and 'txy in an axi-symmetric analysis of 3-D 
component, with the hoop stress o"z equal to the principal stress 0"3 

• Principal normal stresses O"J and 0"2 are calculated from the three stress 
components o"x, O"y and 'txy in a 2-D stress analysis (plane stress or plane 
strain). 

• Absolute maximum difference of any two principal stresses I O"J - 0"2 I , 
I 0"2 - 0"3 I or I 0"3 - O"J I is calculated for the membrane, bending and peak 
categories and designated as Pm or PL, Pb and Q respectively. 

Principal normal stresses and stress intensities (Pm or PL, Pb and Q) have to 
be calculated separately for membrane, bending and peak stress components. 
Depending on the type of analysis carried out using any general-purpose 
software, these values have to be compared with the allowable values of the 
material at the operating temperature. 
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Note : This categorisation of stresses is not relevant for discrete structures 

involving truss, beam, torsion or pipe elements, because stress is either constant 
across their cross section (truss or pipe elements) or varies linearly across every 
cross section and is maximum where bending moment or torque is maximum 
(beam, torsion or pipe elements). 

10.2 TRANSIENT HEAT CONDUCTION 

Time-dependent heat transfer problems are very common in engineering. A 
brief explanation is given about this topic. Detailed presentation is not included 
here, as this topic is outside the scope of syllabus in many universities. The 

solution follows iterative method in multiple time steps and the accuracy 
depends on the selected time step duration. The governing equation for transient 
heat conduction problem is 

~; + ~; + ~:; =(~)=[p~p )( ~)=(~)( ~) ..... (10.3) 

where, a = k/pCp is called thermal diffusivity 

k = Thermal conductivity 

Cp = Specific heat at constant pressure 

and p = Mass density 

In solving this problem, we get an additional matrix, related to the capacity 
of a material to absorb heat, called capacitance matrix [Kd 

[Kc]=pCp ffftNf [N]dV 

pC AL [2 1] = p for I-D element of uniform section 
6 1 2 

/\ 

= pCp A L [ 1 -I] for I-D element of varying section 
6 -1 I 

where, 
/\ (AI +AJ 
A = -'-------''-'-

2 

and [KT] {T} + [Kcl {T'} = {R} 

where {T'}= [dTI/dt dT2 /dt ...... y 

281 



282 FINITE ELEMENT ANALYSIS 

10.3 BUCKLING OF COLUMNS 

The truss element discussed in chapter 4 is assumed to be stable and extend or 
shorten, due to the tensile or compressive load applied along its axis. This is not 
alway,> true. Slender columns, ,>uojected to axial compressive load, are found to 
bend. This phenomenon is called eltlstic insttlhility or elastic htu-kling 
(implying that the bending vanishes when load is removed) and occurs due to 
the difficulty of applying load exactly along the axis (without any ecccillricity) 
or due to non-homogeneity of most practical materials (resulting in non-uniform 
stress distribution across the cross section). 

A slender member AB of length 'L' and having hinged ends at A and B, 
subjected to axial load 'P', bends as shown in Fig.IO.3. The bending behaviour 
depends on the end conditions of the member (free, hinged or fixed) as well as 
its dimensions. 

p ____ ~A~-------~--~t-~---------~B~---P 
1--+ x 

FIGURE 10.3 Buckling of a slender member due to axial compressive load 

Governing equation for this deformation is M I I = E I R 

or 

where, M = - P.y and I/R = d2y/dx2 

d
2
y + P.y =0 

dx 2 EI 
..... (10.5) 

The general solution is y = C 1 sin ax + C2 cos ax where a = H; 
The constants are evaluated from the end conditions. 

y = 0 at x = 0 leads to C2 = 0 

while y = 0 at x = L leads to C1 sin aL = 0 

C1 = 0 is a trivial solution; while sin aL = 0 or L /P = n 1[ where 'n' is fEl 
any integer 

For n = I, Pcr = 1[2 ;1 is called critical load or Euler load. 
L 

This is an eigenvalue problem and the function y = C 1 sin ax is called an 
eigen function. Discrete values of buckling load P = n21[2EI/L2 are called 
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eigenvalues and corresponding mode (or displacement) shapes are elgen 
vectors, similar to natural modes of vibration, as shown in Fig. 10.4. 

n=1 
11=2 n=3 

FIGURE 10.4 Buckling mode shapes 

Corresponding buckling stress, 

P
cr 

1{2 EI 1{2 E 
a =-=--

cr A L2A (L/p)2 
..... (10.6) 

where p = ~(~) is the radius of gyration. 

For loads smaller than Per. the deflection C, or 0 is zero, implying that the 
column remains straight and shortens due to the applied compressive load. 

For a given material of modulus of elasticity 'E', the critical stress crcr 

increases as the slenderness ratio (Lip) decreases i.e., as the column becomes 
shorter and thicker. Thus, below a particular value of' Lip', for which crcr > cry, 
crcr = 1{2E/(Llp)2 is not reached and the column .does not buckle, before the 
column starts yielding. For mild steel, this limiting slenderness ratio is;:::: 100. 

10.4 FATIGUE ANALYSIS 

Fatigue life depends on fluctuating stress cycle, identified by stress amplitude 
over a mean stress at a point in the component, and the number of such cycles 
the product is designed for. All points of a component may not experience same 
stress amplitude or same mean stress. Also, a single point may experience stress 
cycles of different amplitude, for example due to cold start, warm start and hot 
start or due to load change in a steam turbine casing. 

Some components are subjected to more than 106 stress cycles, for example 
due to flexural stress cycles of rotating components or stresses due to vibration 
in static components. They fall in the category of high cycle fatigue and are 
designed for infinite life by limiting stress amplitude below endurance limit 
(SE)' Components subjected to pressure and temperature fluctuations, such as 
due to different start-up procedures of power plant components, experience less 
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than 106 stress cycles. Such components are designed for finite life, based on 
the stress amplitude (>SE) at critical points of the component. 

For example, a turbine casing or rotor experiences zero stress, when shut 
down and very high stress during start-up, when it comes in contact with steam 
at high temperature and pressure. Start-up procedure for a typical 110 MW 
steam turbine, from cold condition, is given in Fig. 10.5. Change of stress from 
stress-free cold condition to the high stress value during transient and back to 
zero stress after shut-down forms one stress cycle, with stress range (St) and the 
turbine is designed for a particular number of such cold starts (nt) during its 
design life of about 40-50 years. Similarly other transients like warm start, hot 
start, load fluctuation due to varying demand between day and night etc .. all 
give different stress ranges (S2, S3, .. ) and each of them may occur for a different 
number of cycles (n2, n3, .. ). 

360"C 
35 ata 

,.i- - - - 360 Tlhr . ,. : 
~--;-I~-+-' -- 535°C .,. 

If 
": I ,.. .f"---- 130 ata " : ,"" . ,. ,. ........ 1' ........ ". - ... 110 MW 

:" .,;,"" : .. 
~.... . -r / ... 

-,,'/ : ." : 
"" I. I ............,. .. r 1 MW luiin 

Load 

- - -. Steam flow 

----. Pressure 

" ".;: : 
."". ".. I I 

- - / . .; ! : 
~. _. I I 

---Temp 

30 75 110 130 Time in min 

FIGURE 10.5 Typical cold start diagram of a 110MW thermal power plant 

The stress range will vary at different points of the structure, for the same 
transient. Corresponding to each stress amplitude, number of cycles to cause 
fatigue failure (Ni) is read from Stress amplitude (S) V s Number of cycles (N) 
curve of the material (Refer Fig.lO.6, for a typical curve), assuming it acts 
alone. Due to large scatter in the experimental data of S-N values from uni-axial 
fluctuating load test, a factor of 2 on stress and 20 on number of cycles is used 
in some codes, white preparing S-N curve of a material. Then, fatigue usage 
fraction 'U' is obtained from the most widely used model (Palmgren-Miner 
hypothesis, popularly known as Miner's rule), for validating safe design of a 
component. 
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FIGURE 10.6 Typical S-N curve of a material 

Fatigue usage fraction, U F = ~[ ~ii J < 1 ..... (10.7) 

The finite element analysis gives us 6 stress components (3 normal stresses 

and 3 shear stresses) at each node point of a 3-D continuum structure or 4 stress 

components (3 normal stresses along axial, radial and hoop directions and 1 

shear stress) in an axisymmetric analysis, while S-N curve of a material is 
given for one particular stress. Usually vonMises stress or maximum principal 

stress difference is used with the S-N curve. This stress value is obtained at each 

point and at each time step of the transient. Stress amplitude (Si), half of stress 

range, is calculated over the complete transient, consisting of many time steps. 

Corresponding to this stress amplitude, number of cycles to failure (Ni) is 

obtained from the S-N curve of the material and fatigue usage fraction 

calculated to validate the design. 

10.5 CREEP ANALYSIS 

Creep is a phenomenon in which a component, stressed well within its yield 

point by the applied loads, yields when the load is applied for a prolonged 

period. A constant stress state for a prolonged period is naturally feasible when 

the equipment is operating in steady state condition. The time in which the 

material starts yielding, at a particular stress level, is called rupture time (Refer 

Fig. 10.7). Creep is prominently observed in equipment operating at elevated 

temperatures. 
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Stress 

Time to rupture, t, 

FIGURE 10.7 Typical Stress vs. rupture time curve of a material 

If a structure, during its life time, works for periods of time (tj) at different 
stress levels, life fraction rule (similar to Miner's rule) states that 

m (t') Creep usage fraction, U c = I -.!... < I 
. = 1 tn 

..... (10.8) 

The finite element analysis gives us 6 stress components (3 normal stresses 
and 3 shear stresses) at each node point of a 3-D continuum structure or 4 stress 
components (3 normal stresses along axial, radial and hoop directions and I 
shear stress) in an axisymmetric analysis, while S-t, curve of a material is given 
for one particular stress. Usually vonMises stress or maximum principal stress 
difference is used with the S-tr curve. This p..rolonged duration stress (Sj) is 
calculated at each point during steady state operation of the component. 
Corresponding to this stress value and operating temperature, rupture time (tri) 
is obtained for the particular material and the creep usage factor calculated to 
validate the design. 

Cumulative damage due to fatigue and creep 

There are components, as in a hydro turbine, which are subjected to fatigue only 
and creep at the operating temperature is insignificant. There are also 
components, as in a steam turbine, where fatigue due to load transients and 
creep due to prolonged. steady load operation at high operating temperature 
are significant. It is well known that fatigue damage and creep damage are' inter
related; but, the interaction effect is not well understood. Hence, some design 
codes suggest calculation of cumulative usage as the algebraic sum of damages 
due to fatigue and creep. Thus, 
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III (n) k (t ) Cumulative usage fraction, U = I ~ + I ~ 
,=1 n, J=I tT 

••••• (10.9) 

and it is usually limited to ::::: 0.5 to account for the unknown interaction 
effects. 

10.6 DAMPED FREE VIBRATION 

Every structure, when excited with some force, vibrates with a particular 
frequency and amplitude. In most cases, amplitude of vibration reduces with 
passage of time and finally reaches zero value. This is called damping -
inherent structural damping (usually considered as a function of mass and 
stiffness) or external damping with spring and/or viscous dash pot. 

In a single degree of freedom system, 

k u(t) + c u(t) + m U(t) = 0 ••••. (10.10) 

h ,du. hi' h . were u = - IS t e ve OClty at t at pomt 
dt 

c = damping coefficient, which is usually a function of velocity 

and .. du d
2
u. I I' h . u = dt or dt 2 IS t le acce eratlon at t at pomt 

A solution of the form u = aeA.t will satisfy the equation. 

Then, m ,.} + c A, + k = 0 is the characteristic equation of the governing 
equation and its roots are 

The type of motion depends on the nature of the roots or on the value of 
(c/2m)2 - (kim) 

(i) If (2: r > (~) or c > 2 .Jkm , the roots A,\ and A,2 are real and 

negative. 

Then, u(t) decays as a function of time and no vibration occurs 
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(ii) If (2: r < (~) or c < 2 .Jkm , the roots A.I and A.2 are a pair of 

complex conjugate solutions. The real part represents exponential decay 
of the amplitude of vibration and imaginary part represents oscillatory 
part of motion with a damped free vibration frequency given by 

~(k/m)- {c/2m)2 

(iii) (2: r = (~) or c = 2 .Jkm , is called critical damping 

Any linear combination ofthese roots is also a solution. Thus, in general, 

u = al eA.lt + a2 eA2t is also a solution 

By assuming sinusoidal function for u(t) and expressing 6(t) and ti(t) in 
terms ofu(t), the above equation can be rewritten as 

(k + b c + b2 m) u(t) = 0 

In a multi-degree of freedom system, the stiffness, damping and mass terms 
take the form of matrices and the governing equation can be expressed in the 
matrix form as 

([K] + b [C] + b2 [M] ) {u(t)} = {O} ..... (10.11) 

where, structural damping is assumed to be a function of mass and stiffness, 
given by 

[C] = a [M] + ~ [K] with a and ~ being real constants. 

The elements C'j of the damping matrix [C] have a physical significance 
analogous to elements k'J of the stiffness matrix [K]. Cjj is equal to the external 
force required at node I in direction Uj to produce unit velocity at node J in 
direction uJ with velocities at all other masses zero. Analogous to stiffness 
matrix, C'J = Cj,. 

Damping force {F}D = - [C] {Ii }. 

10.7 FORCED VIBRATION 

When a structure is subjected to dynamic (time dependent) loads such as wind 
load, the displacements, strains and stresses will also vary with time. The 
solution can be obtained by marching in a series of time steps M and evaluating 
accelerations, velocities and displacements at each step. Modal matrix can be 
used in the mode superposition method to diagnose mass, damping and stiffness 
matrices and thus uncouple the equations of motion. 

([K] + b [C] + b2 [MD {u(t)} = {F(t)} ••••. (10.12) 
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The calculation of nodal displacements V s time is called time history 

response. 

Sometimes, the dynamic load may not be known in the form of Force Vs 

time, but as random vibration (such as earthquake) in the form of frequency Vs 

acceleration. This frequency spectrum is treated as a linear combination of 

individual acceleration (amplitude) Vs time of specific frequencies. Each 

acceleration Vs time is equivalent to applying force Flit) at node I in Jlh DOF 

given by F,j = mass at node I x acceleration in Jlh DOF. This analysis is called 

response spectrum analysis. 

:1.0.8 TORSION OF A NON-CIRCULAR BAR 

A bar of circular cross section, subjected to pure torsion, is analysed using the 

assumption that plane section before applying torsion remains plane after 

applying the load. i.e. there is no warping of the section or all points on the 

cross section will have either zero or equal displacements along the axis of the 

bar. The same is not true with a bar of non-circular cross section. Displacements 

at different points of a bar of non-circular cross section subjected to torsion are 

defined by 

u = -9 zy; v = 9 zx and w = 9 ",(x,y) 

where ",(x,y) is the movement of cross section in the axial direction (z-axis) per 

unit twist and is called warping function 

and 9 is the angle of twist per unit length 

For pure torsion, ex = ey = ez = 'Yxy = 0 

aw au aw 
'Yxz = Ox + az = Ox -!:Jy 

aw Ov aw 
'Y =-+-=-+9x 

yz Oy az Oy 

Applying Hooke's law, the stress components become ax = a y = a z = 'txy = 0 

'txz =?Y xz = G [: - 9Y] 

tyz =Gyyz =G[: +sx] 
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The general equation of motion, 

p. p + (J. = P (dU I 
) 

I IJ,J dt 

simplifies for the case of body force PI = 0 to 

Ot xz + Ot yz = 0 
ax 8y 

since displacement Ui is independent of time t 

Substituting for the shear stresses, from the above, yields Laplace's equation 

a2w a2w 
--+--=0 
ax2 8y2 

a2 a2 

Using 'V(x,y), we get -t + ~ = 0 
ax 8y 

The stress-free condition of the periphery of the cross section requires that 
the tangential stress be zero on the lateral surface of the prism. Thus, the 
boundary condition is of Neumann type, 

Txz Ax + Tyz A.y = 0 

h "I dy d "I - dx h d" . f h were, II. x = - an lI.y = -- are t e IrectJon cosmes 0 t e tangent vector 
ds ds 

Substituting the above, we get 

Integral of the variational problem is given by 

1= U =(~) Jcr ij Eij dV 
v 

We use finite element idealisation over the cross section and interpolate the 
unknown solution function 'V(x,y) by a polynomial over each element through 
10dal values 'Vi. From variational principle, 

or 

81 = 0 

~=O 
mvi 

\f i=l,n 
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This condition leads to a system of linear algebraic equations to be solved 
for '1'. in the usual manner. 

Alternatively, a hybrid finite element model can be developed by introducing 
stress function cp(x,y) interpolated over each element (satisfying equilibrium 
conditions) and warping function 'I'(x,y) specified along inter element boundary 
(satisfying compatibility conditions). This model gives more accurate stress 
solutions, particularly in the vicinity of external boundary. The stress 
components, in terms of the stress function, are given by 

8cp c3<p 
't xz =- ; 't yz =-

dy dx 

Complete restraint of warping of a member, of non-circular cross section and 
subjected to torque, reduces rotation at the end but introduces axial normal 
stresses much larger than the torsional shear stress. Even in a simple portal 
frame, shown below, warping is at least partially restrained at nodes A, 8, C 
and D. Such restraint influences response due to loads normal to plane of the 
frame. Full or partial restraint of warping is experienced at every joint of a 
frame and can be included with an additional OOF (rate of twist, d9x/dx) at each 
node. Most commercial software do not include this 7th OOF at a node and 
warping restraint as well as associated axial stress are ignored. 

B c 

A D 
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CHAPTER 11 

COMPUTATIONAL FLUID 
DYNAMICS 

1L1 INTRODUCTION 

The physics of almost every fluid flow and heat transfer phenomenon is 
governed by three fundamental principles - mass conservation, momentum 
conservation (or Newton's second law) and energy conservation - taken 
together with appropriate initial or boundary conditions. These three principles 
may be expressed mathematically in most cases through integral or partial 
differential equations (POE) whose closed form solutions rarely exist. The 
ability to seek numerical solutions of these governing equations has led to the 
development of Computational Fluid Dynamics (CFO). 

To obtain numerical solution to the physical variables of the fluid field, 
various techniques are employed: 

• manipulating the defining equations 

• dividing the fluid domain into a large number of small cells or control 
volumes (also called mesh or grid) 

• transforming partial derivatives into discrete algebraic forms and 

• solving the sets of linear algebraic equations at the grid points 

Modem CFO can handle fluid flow associated with other phenomenon such 
as chemical reactions, multi-phase or free surface problems, phase change 

. (melting, boiling, freezing), mass transfer (dissolution) and radiation heat 
transfer. A CFO code has three basic components - preprocessor, solver and 
postprocessor. The solver is the heart of a CFO code and is usually treated as a 
'black box' while the other two components provide user/computer interface. 
Solver is based on one of the three major discrete methods - finite difference 
method (FOM), finite element method (FEM) or finite volume method (FVM). 
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Over 90% of CFD codes are based on FDM or FVM. FVM is now very well 
established and is used in most commercial CFD packages like FLUENT, 
FLOW-3D. 

FEM was initially developed for structural analysis but has been extended to 
fluid flow problems as it offers the advantage of non-regular grid, capable of 
simulating complex boundary geometries. Also, the methodology used for 
describing flow conditions within each cell, though more complex than FDM, 
have a higher degree of accuracy. FVM draws together best attributes of FDM 
and FEM. It is capable of simulating complex boundary geometries while 
utilising relatively straight forward finite difference relationships to represent 
the governing differential equations. Complete presentation of FDM and FVM 
are not in the scope of this book. FDM is detailed below as some of these ideas 
are also used in FVM. 

11.2 GOVERNING EQUATIONS 

Partial differential equation is an equation involving one or more partial 
derivatives of an unknown function of two or more independent variables. 
Order of the highest derivative in the equation is the order of the equation. The 
partial differential equation is termed linear if the dependent variable (unknown 
function) and its partial derivatives are of first degree. The equation is termed 
homogentous if each term of the equation contains either the dependent 
variable or one of its derivatives. 

Some important linear partial differential equations in fluid dynamics are: 

1. I-D wave equation 

2. I-D heat conduction equation 

3. 2-D Laplace equation 

4. 2-D Poisson equation 

5 .. 3-D Laplace equation 

a2u 2 a2u 
--=c --
at? &2 

k 
where a=-

(pCp) 
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A single partial differential equation can have more than one solution. 

Unique solution of a partial differential equation, corresponding to a given 

physical problem, depends on additional information like: 

(a) Boundary comlitions: values of the required solution on the boundary 

of some domain 

(b) Initial conditions: values of the solution, when time t is an independent 

variable, at time = o. 

Superposition : For a homogeneous linear partial differential equation with 

known solutions UI and U2, any linear combination of these solutions is also a 

solution. 

i.e. u = CI UI + C2 U2 is also a solution, 

where CI and C2 are constants. 

Any PDE which is linear in the highest derivative is termed as quasilinear . 

Ex: 

where 

Using 

and 

A Uxx + B uxy + C Uyy = F(x, y, u, ux, Uy) 

au au a2u u =- . u =_. u =-
x Ox' y Oy' xy Ox Oy 

= uxx dx + uxy dy 

= Uxy dx + Uyy dy 

eq. (11.1) can be rewritten as l ~ B 

~Jr:}~F} dy 

dx dy uyy du y 

For a non-trivial solution, 

..... (11.1) 

A (dy)2 - B (dx)(dy) + C (dxi = 0 or A( ~~ r -B( ~~ J + C =0 
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This can be expressed in matrix form as 

ABC 

dx dy 0 =0 

o dx dy 

d [B±~B2 -4AC] 
which gives ~ = =-------= 

dx 2A 

..... (11.2) 

Characteristic curves, represented by this equation, can be real or imaginary 
depending on the value of (B2 - 4AC). 

Partial differential equations (PDEs) (in particular, governing equations in 
fluid dynamics) are classified into three categories: 

• Elliptic, when B2 - 4AC < 0 

. a2u a2u 
[Laplace equation, -2 + -2 = 0 

ax ay 

02U 02U 
Poisson equation, -2 +-2 =f(x,y)] ox oy 

• Parabolic, when B2 - 4AC = 0 

[Heat equation, ': ~ a( ~~ ) and a > 0] 

• Hyperbolic, when B2 - 4AC > 0 

[2nd order Wave equation, 

11..3 FINITE DIFFERENCE METHOD (FDM) 

Basic idea of FDM is that derivatives in differential equations are written in 
terms of discrete quantities of dependent and independent variables, resulting in 
simultaneous algebraic equations with all unknowns prescribed at discrete mesh 
points covering the entire domain. Appropriate types of differencing schemes 
and suitable methods of. solution are chosen, depending on the particular 
physics of the flows which may include: 

• inviscid or viscous flow 

• incompressible or compressible flow 

• irrotational or rotational flow 
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• laminar or turbulent flow 

• subsonic or transonic or supersonic or hypersonic flow etc. 

FDM utilises a time distance grid of nodes and a truncated Taylor series 
approach to determine the conditions at any particular node one time-step in the 
future based on the conditions at adjacent nodes at the current time. 

There are two schemes of using Finite Difference type approximations to 
convert the governing Partial Differential Equation into an algebraic format -
Explicit and Implicit. In the explicit method, required value of variable at one 
time-step in the future is calculated from known current values. It requires 
selection of a very small time-step based on the grid size and hence takes more 
computer time. Implicit methods allow arbitrarily large time-step thus reducing 
computer time required for solution. However, these methods do not give direct 
solution and require iterative solution which sometimes may lead to 
convergence problems (for control volumes with large aspect ratios). Also, 
these methods are not accurate for convective processes. 

:1.1.4 ELLIPTIC EQUATIONS (OR BOUNDARY VALUE PROBLEMS) 

First boundary value (Dirichlet) problem -

u is prescribed on the boundary curve C of region R 

Second boundary value (Neumann) problem-

Un = au (normal derivative of u) is prescribed on the boundary curve C of 
an 

region R 

Third boundary value (Mixed) problem -

u is prescribed on a part of the boundary curve C and Un on the remaining 
part of C of region R 

C is usually a closed curve or sometimes consists of two or more such 
curves. 

To obtain numerical solution, partial derivatives are replaced by difference 
quotients. Using Taylor's expansion, 

u(x + h,y) ~ u(x,y) + hu.(x,y) + (~ )Uu (x,y) + (~ )u."" (x,y) + ... ..(1.1.3) 

Similarly, 

u(x - h,y) = u(x,y) - hux(x,y) + (h22)uxx (x,y) - (~ )uxxx (x,y) + ... .. (11.4) 

297 



298 FINITE ELEMENT ANALYSIS 

Subtracting eq. (4) from eq. (3) and neglecting higher order terms in h, 

( ) 
[u(x+h,y)-u(x-h,y)] 

u" x,y ~ 2h ••••• (11.5) 

Similarly, ( ) 
[u(x,y+k)-u(x,y-k)] 

uy x,y ~ 2k .•••• (11.6) 

These are called central difference formulae for the first derivative. 

On the same lines, two other forms can also be derived based on Taylor 

series expansion at some other points 

( ) 
[u(x + y,h)- u(x,y)] 

u x x, y ~ or Forward difference formula 
h 

••••• (11.7) 

( ) [u(x,y)-u(x-h,y)] ·.ldif.J1"1: fi l (118) 
U x x,y ~ or Backwar" ''.Ierence ormu a..... . 

h 

Second derivative can also be expressed, in a similar way, as 

( ) ~[ux(x+h,y)-u(x-h,y)] [ux(x+h,y)-ux(x,y)] 
uxx x,y ~ 2h or h 

[u(x + h,y) - 2u(x,y) + u(x - h,y)] 
~ h2 

.•••• (11.9) 

[uy(x,y+ k)- uy(x,y - k)] 
Uyy(x,y)~ 2k or 

[u(x,y + k) - 2u(x,y)+ u(x,y + k)] 
~ k2 

[uy (x,y + k) - uy(x,y)] 

k 

•••.• (11.10) 

These are called central difference formulae for the second derivative. 

Substituting eq. 11.9 and eq.l1.1 0 in Laplace equation and using h = k, 

a2u a2u 
V2u =-2 +-2 = u(x + h, y) + u (x- h, y) ax 8y 

+ u (x, y + k) + U (x ,y - k) - 4u (x, y) = 0 ..... (11.11) 

or u at (x, y) equals the mean of values of u at the four neighbouring mesh 

points. 

This is called 5-point regular operator 
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Laplace equation can also be expressed using some other difference 

formulae as 

V 2U = U(x + h,y + k) + u(x - h, y + k) + u(x + h,y - k) + 

u(x - h, y - k) - 4u(x, y) = 0 ..... (U.12) 

This is called 5-point shift operator 

Combining eq.ll.ll & -eq.ll.12, we get 9-point formula, given by 

u (x + h, y) + U (x - h, y) + u (x, y + k) + u (x, y + k) + 

u (x + h, y + k) + u (x - h, y + k) + u (x + h, y - k) + 

u (x - h, y - k) - 8u(x, y) = 0 ••••. (11.13) 

The coverage of 5-point operators and 9-point operator are shown below on 

the model, 

x, y + k x h k - ,y + x+ h + k , Y 

1 I 1 I I I 

1 ·4 1 .-4 1 8 1 
x, h + « (x, y) x h. y x,y x,y 

x, h-·k I I I I I 1 

x h,y k + x h. y. k 

5-point regular operator 5-point shift operator 9-point formula 

Similarly, Poisson equation can be rewritten in central difference form as 

u (x + h, y) + u(x - h, y) + u(x, y + k) + u(x, y - k) 

- 4u(x, y) = h2 f(x, y) ..... (U.14) 

Use of polar coordinates (r-9) may be more convenient with some 

geometries. For those situations, Laplace equation in polar coordinates can be 

obtained by substituting 

cos 9 = x; sin 9 = r; tan 9 = Y and r2 = x2 + l 
r r x 

in ••••• (11.15) 
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where 

i + 2 

Vr 

va va 
i+3 

Vr 
i+I 

i+4 

(a) Numerical solution of Dirichlet problem 

A grid consisting of equidistant horizontal and vertical straight lines of 
distance h is introduced in the given region R. Then, the unknown 
values of u at each of the grid intersection points or mesh points are 
related to the neighbouring points. This yields a system of linear 
algebraic equations. The coefficients of the system form a sparse matrix. 
It can be changed to a band matrix by numbering mesh points in such a 
way that all non-zero elements are arranged around the principal 
diagonal. The system of linear algebraic equations can' be solved by 
Gauss elimination method or Gauss-Siedel iteration method. 

Alternating Direction Implicit (ADI) method uses Equation (11.9) and 
rewritten as 

u(x + h, y) - 4u(x, y) + u(x - h, y) = - u(x, y + k) - u(x, y - k) 

or Ui+l,j - 4ul,j + Ui_l,j = - UI,j+) - Ui,j_) ••••• (11.1.8) 

and u(x, y + k) - 4u(x, y) + u(x, y - k) = - u(x + h, y) - u(x - h, y) 

Ui,j+l - 4Ui,j + UI,j_) = - Ui+), j - u l _), j ••••• (~1.!) 

Solution is obtained by iteration method from an arbitrary starting v~lue 
Uij at all mesh points. Eq.(11.l1) for a fixed row). gives a system of.t, 

linear equations, corresponding to n columns, in n unknowns which'can 
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be solved for U'j by Gauss elimination. This can be repeated, row by 
row, for all the rows. In the next step, Eq.( 11.12) for a fixed column i, 
gives a system of m linear equations, corresponding to m rows, in m 

unknowns which can be solved for U'j by Gauss elimination. This can 
be repeated, column by column, for all the columns. 

Convergence can be improved by moditying eqs. 11.11 and 11.12 as 

U,+l,j - (2 + p)u',J + Ui-l,J = - U',j+l + (2 - p)u',j - U"j-l ...•• (11.18) 

U',j+l - (2+P)Ui,j + U',j-l = - U,+I,J + (2-p) U',j - U,-l,j ...•. (11.19) 

where p is a positive number 

Example 11.1 

A rectangular plate is subjected to temperatures on the boundary as shown. Find 
the temperature distribution inside the plate. 

Solution 

Let us divide the plate into a 3 x 3 mesh, for ease of calculation, as shown 

T~OuC 
A \. 1,3 I 

I 
I 

1,2 
I 

2,2 3, I 

~ I ,/ I 
I 

2 

T= 100 "c 

0,1 3, 
1,1 I 2, I I 

I 
I 

1,0 I 2,0 I I 

B 
T= 100 "c 

(a) Gauss elimination method 

Applying eq.(11.9) at (1,1) -4 Tl,l + T2,l + Tl,2 = - (Tl,o + TO,I) = -200 

Applying eq.(11.9) at (2, I) Tl,1 - 4 T2,l + T2,2 = - (T2,o + T3,1) = -200 

Applying eq.(11.9) at (1,2) Tl,l - 4Tl,2 + T2,2 = - (Tl,3 + To,2) = -I 00 

'/ Applyingeq.(11.9) at (2,2) T2,l +Tl,2 -4T2,2 =-(T3,2+ T2,3)=-IOO 

Solving these 4 simultaneous equations, we get 

Tl,l = T2,l = 87.5 °C; T1,2 = T2,2 = 62.5 °C 

Note that the results also satisfY symmetry about the center line AB 

301. 
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(b) Gauss-Siedel iteration method or Liebmann's method 

Starting with an initial approximation of TI,I = T2 ,1 = TI,2 = T2,2 = 100, 

and substituting the most recent values on the right side of the modified 

equations, we get improved values for the unknowns on the left side, 

after each iteration. 

-4 TI,I + T2,1 + TI,2 + 4T2,2 = -200 or TI,I = (T2,1 + TI,2 + 200) 14 

TI,I -4 T2,1 + T 2,2 = -200 or T2,1 = (TI,I + T2,2 + 200) 14 

TI,I - 4TI,2 + T 2,2 =-100 or TI,2 = (TI,I + T2,2 + 100) I 4 

T2,1 + TI,2 - 4T2,2 = -100 or T 2,2 = (T2,I+TI,2+100)/4 

Iteration T],1 T2,] T],2 T2,2 

1 100 100 75 68.75 

2 93.75 90.62 65.62 64.06 

3, 89.06 88.28 63.28 62.89 

4 87.89 87.94 62.94 62.72 

5 87.72 87.61 62.61 62.55 

6 87.55 87.52 62.52 62.51 

7 87.51 87.50 62.50 62.50 

8 87.50 87.50 62.50 62.50 

(c) Alternating Direction Implicit (AD/) method 

Let us start with initial approximate solution of 

TI,I = T2,1 = TI,2 = T2,2 = 100 

Iteration number is not ipdicated in the following equations for the 

terms whose values are specified (on the boundary and hence, constant). 

Step 1 : Using Ti+l,j - 4Ti,J + Ti-I,j = - T.,j+1 - T',J-I with different rows 

and columns, 

For j = 1 and for i = 1, 

for i = 2, 

T (I) 4T (I) T - T T (0) 2,1 - 1,1 + 0,1 - - 1,0 - 1,2 

T 4T (I) T (I) - T T (0) 3,1 - 2,1 + 1,1 - - 2,0 - 2,2 

Solution of these two simultaneous equations in two unknowns give, 

TI,I =T2,1 = 100 

For j = 2 and for i=l, 

for i = 2, 

T (I) 4T (I) T - T (0) T 2,2 - 1,2 + 0,2 - - 1,1 - 1,3 

T 4T (1) T (1) - T (0) T 3,2 - . 2,2 + 1,2 - - 2,1 - 2,2 
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Solution of these two simultaneous equations in two unknowns give, 

TI,2 = T2,2 = 66.67 

Step 2: Using T'J+1 - 4T'J + T'J 1 = - TltlJ - T'1J with different rows 

and columns, 

For i = 1 

for j = 2, (2) (2) (1) T1,3 - 4T1,2 + Tl,l = - TO,2 - T2,2 

Solution of these two simultaneous equations give, 

T1,1 = 91.11; T1,2 = 64.44 

For i=2 and forj=l, T2/)-4T2,1(2)+T2,O=-T1,1(1)-T3,1 

for j = 2, T2,3 - 4T2,2(2) + T2,1(2) = - T1,2(1) - T3,2 

Solution of these two simultaneous equations give, 

T 2,1 = 91.11; T2,2 = 64.44 

Steps I & 2 are repeated until reasonably accurate solution for the 

unknowns is obtained 

(b) Numerical solution of Neumann problem and Mixed problem 

In order to take into effect the values of nonnal derivatives specified on 

the entire (or part of the) boundary, the region is extended to some 

imaginary mesh points outside the given region and central difference 

formula for the derivative on the boundary is used to express the 

unknown value at the imaginary mesh point in tenns of the values on 

the actual geometry. The simultaneous equations so obtained are solved 

by one of the standard numerical method for computing the required 

solution. 

Example 11.2 

a2u a2u 
Solve the equation -2 + -2 = V 2 u = f(x, y) = 12 xy for a rectangular plate ax ay 
of 1 cm x 1.5 cm with boundary conditions u = O.on x = 0; 

o ; u = 3i on x = 1.5 and Un = 6x on y = 1. 

u = 0 on y= 
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Solution: 

y 1,3: : 2,3 

0--) , -
1 1 

1,21 12,2 
3,2 

Un - 6x 

u=3y 
) 

0, I 
I, I 2, I 

3, I 
u=o 

x 0,0 
1,0 2.0 3,0 

u=o 

Plate of I cm x 1.5 cm is divided into a mesh of 2 x 3. So each cell is of 
0.5 em x 0.5 em. 

or 
2 12xy 

h = 0.5 and h f(x, y) = -- = 3 xy 
4 

From the given boundary condition u = 3i, tl30= 0; U31 = ~ = 0.375; U32 = 3 
, '8 ' 

From the given boundary condition Un = 6x, 

at UI,2 = 6 x 0.5 = 3 

and at U2,2 = 6 x I = 6 

8Ul2 (U I3 -U II ) 
Using central difference formula, --' = ' , = 3 

ay 2h 

or UI,3 = UI, I + 3 ..... (11.20) 

Similarly, 
8U 22 (U 23 - u2 I) --' = ' '=6 
ay 2h 

or ..... (11.21) 

Using 5-point regular operator and retaining only unknowns on the left side, 

at (l, I), tl2,1 + UI,2 - 4 UI,I = 3 xy - UI,O - UO,I 

=3 x 0.5 x 0.5-0-0=0.75 ..... (11.22) 

and at (2,1), til,! + U2,2 - 4 U2,1 = 3 xy - U2,O - U3,! = 3 x 1 x 0.5 - 0 - 0.375 

= 1.125 ..... (11.23) 
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To use nonnal derivative as the boundary condition, 5-point operator with 

imaginary points in the extended region is applied at (1,2) and (2,2) as follows: 

At (1,2), Ut,t + U2,2 + Ut,3 - 4 Ut,2 = 3 xy - UO,2 = 3 x 0.5 x I - 0 = 1.5 

or substituting Ut,3 = Ut,t + 3 from eq.II.22, 

..... (11.24) 

At (2,2), Ut,2 + U2,t + U2,3 - 4 U2,2 = 3 xy - U3,2 = 3 x I x I - 3 = 0 

or substituting U2,3 = U2,1 + 6 from eq.II.23, 

2 U2,1 + UI,2 - 4 U2,2 = 0 - 6 =-6 ..... (11.25) 

Eqns 11.22, 11.23, 11.24 and 11.25 can also be written in matrix form as 

-4 I 0 U1,1 0.75 

-4 0 U2,1 1.125 
= 

2 0 -4 U1,2 -1.5 

0 2 -4 U2,2 -6 

By solving them, we get UI,I = 0.077; UI,2 = 0.866; U2,1 

U2,2 = 1.812 

11..5 FINITE VOLUME METHOD (FVM) 

0.191 and 

This method utilises control volumes and control surfaces. Finite Volume 

fonnulations can be obtained either by a finite difference basis or by a finite 

element basis. The control volume, in a 1-0 problem covering nodes i-I, i and 

i + 1, for node i covers Lix to the right of node i and Lix to the left of node 
2 2 

i with the control surface CSt and CS2 being located at i -! and i +! . 
2 2 

I 
i--

I 
i+-

i-I 
2 2 

i+ I 
x x x x x 

L6X I CSl cv CS21 6X~ 6x 
2 

~4I ~4I 
2 
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(a) FVM via FDM 

C ·d h I· I d
2

u - 2 -- 0 fi 0 1 onsl er t e ear ler examp e or < x < 
dx 2 

with Dirichlet Boundary conditions u = 0 at x = 0 & at x = 1 

~ d2U 1 -2 -2 dx=O O<x<l 
o dx 

(
d ) I I 

Integrating, ~ I - f2 dx = 0 
dx 0 0 

I (L\u) - I 2 L\x = 0 at i = 2 
CSI,CS2 L\x cv 

Diffusion flux (::) is conserved between i-I and i through control 

surface at i -~ or CS I and between i and i + I through control surface 
2 

at i +~ or CS2 
2 

This can also be written, in terms of finite differences, as 

( Ul+~: u i ) _ ( ui ~:l-I ) = 2L\x 

or Ui + I - 2 Ui + Ui _ I = 2 L\x2 

This is identical to the equation obtained by FDM. 

(b) FVM via FEM 

In the same example, let u = NI UI + N2 U2 [1- :}I +[:J U2 

(
dU) =_(U2-UI); (dU) =_(U3 -U2 ) 
dx CSI h dx CS2 h 

d'u -2~ (~L, -(~L, -2~ (u, -2u, + u,) 
dx 2 h h2 

or U3 - 2U2 + UI = 2 h2 

This is also identical to the equation obtained by FDM. 
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U.6 FDM vs. FEM 

S.No. Finite Difference Method Finite Element Method 

I. Finite difference approximation Interpolation functions and 
from Taylor series expansion is polynomi~1 expansion are used 
used 

2. Equations are written for structured Equations are written for grids, not 
grids and less complicated. Hence, necessarily structured, with nodes 
need lesser computer time irregularly connected around the 

entire domain resulting in a large 
sparse matrix system for solution 

3. Treatment of governing equation Variational formulation employed not 
and different boundary conditions is only for the governing equation but 
not uniform. The solution method is for all constraint conditions - useful 
tailor-made for each situation for solution stability and accuracy 
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CHAPTER 12 

PRACTICAL ANALYSIS 
USING A SOFTWARE 

12.1. USING A GENERAL PURPOSE SOFTWARE 

Many general purpose software are readily available for analysis of mechanical, 
civil and aircraft structures based on FEM. Even though actual commands may 
vary from one software to another, the general features can be broadly classified 
under the following three categories. 

(i) Pre-processor Phase 

In this phase, data is input by the user regarding 

(a) Idealised I-D, 2-D or 3-D geometric model consisting of: 

• element type (discrete structure with truss, 2-D beam, 3-D beam 
or pipe elements; continuum with 2-D plane stress, plane strain, 
thin shell, 3-D solid or thick shell elements) 

• appropriate nodal coordinates 

• element attributes and element connectivity. 

In some large components, it is also possible to create a large 2-D 
or 3-D model using key points and Boolean operations on areas or 
volumes. These areas or volumes can be meshed by the software 
into many elements of equal or different sizes depending on user's 
choice as per the expected stress distribution. The software makes 
sure that the generated elements satisi)' aspect ratio norms. 

(b) Properties of materials such as 

• modulus of elasticity, Poisson's ratio, mass density, coefficient 
of linear thermal expansion etc. for structural analysis 
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• thermal conductivity, specific heat etc. for a thermal analysis; 
with options of : 
- isotropic or orthotropic 
- constant or temperature-dependent material data. 

Some softwares have standard material properties in their database. 
User need to specifY the material type only. Care must be taken to 
see that the units in the material database correspond to the units of 
the other data input by the user. 

(c) Section properties like: 

• area for a truss element 
• moment of inertia and section depth in a beam element 
• thickness in a 2-D plate etc. 

Some software include the facility of choosing a standard section 
shape such as C, I, L, H, from its database with their dimensions 
specified by the user and then calculate values like area, moment of 
inertia etc. 

Material and section properties may be identified with material 
numbers and section numbers so that each element can be associated 
with a particular material number and a particular section number 
(called element attributes). In this way, material data and section 
data, common to many elements, need not be input repeatedly, 
saving considerable time and effort in data preparation. 

(d) Load particulars such as: 

• distributed loads due to self weight, wind load 
• concentrated or point loads 
• steady-state or transient temperature distribution over the entire 

model, for a structural analysis 
• free-stream temperature, constant temperature on some part of 

boundary for a thermal analysis etc. 

It is also possible to analyse the same structure for different sets of 
loads (defined in some software as load steps or load cases) 

(e) Boundary conditions or restraints for translation or rotation OOF 
at various nodes (including restraints on rigid body motion), 
indication of symmetry for a structural analysis or insulated wall 
for a thermal analysis etc. 

Most software use consistent dimensions without any conversion of 
units inside the program. It is, therefore, user's responsibility to input 
data and interpret the output in appropriate units. For example, if 
coordinates are input in 'mm' and loads in 'Newton', then area of cross 
section should be in 'sq. mm', moment of inertia should be in 'mm4' ancl 
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modulus of elasticity should be in 'N/sq. mm', Correspondingly, the 
displacements calculated at nodes will be in 'mm' and stresses will be in 
'N/sq.mm'. 

Most programs also check for validity as well as sufficiency of the 
given data either in the pre-processor phase or in the solution phase 
before proceeding with the actual solution to save computer time as well 
as user's time. The pre-processor phase generates a data file in the 
sequence required by the solution phase 

(ii) Solution Phase 

In this phase, the program uses the data file generated by the pre
processor stage and carries out desired analysis. 

Different options usually available are: 

(a) static structural analysis, which calculates nodal displacements 

(b) dynamic structural analysis, which calculates natural frequencies 
and mode shapes or time history response (corresponding to load 
Vs time data) or response to earthquake (corresponding to 
frequency Vs amplitude data) 

(c) thermal analysis, which calculates nodal temperatures due to 
thermal conduction in a solid body with specified temperature and/ 
or convection boundary conditions. 

(iii) Post-processor phase 

The output of solution phase is a large set of nodal displacement or 
temperature values. The post processor phase reads these values as well 
as geometry data of pre-processor phase and presents in a more easily 
readable form such as iso-stress or iso-temperature contours, plots of 
deformed shape etc. Some software also has the facility of presenting 
output for a specific combination of different loads (or load steps). 

Many general purpose software, such as ANSYS, ADINA, 
NASTRAN, PAFEC, NISA, PAFEC, STRUDL, etc., are commercially 
available in the market. The specific format and sequence of input data 
may vary between them. Also, modelling options as well as loads and 
boundary conditions that each of the software can handle may also vary. 
But, data to be input generally remains the same. 

12.2 SOME EXAMPLES WITH ANSYS 

An attempt is made, through simple exercises, to make the students understand 
various features of a general purpose finite element software. ANSYS software 
has been chosen for this purpose. The input commands or their format may 
change in different versions of this software or between different software. So, 

311 



3:1.2 FINITE ELEMENT ANAL YSIS 

this should only be taken as a model. Till the students understand proper 
method of giving necessary data and using appropriate commands, they are 
advised to cross-check the results obtained using any general purpose 
software with those calculate{1 by conventional strength of materials 
approach. This will ensure that the data input by them is interpreted by the 
software in the way they desired. 

ANSYS is a general purpose software developed by Swanson Analysis 
Systems Inc, USA for analysis of many different engineering problems. Input 
sequence for solving the following problems are given here. Theoretical results 
from conventional methods are also given here for verifying the output of 
ANSYS and thus ensure that the features of this software are properly utilised. 
These problems are not exhaustive of the features of the software but only 
meant to link the theory covered so far with some typical problems. 

ANSYS software has been used here. for explaining some examples, with 
their explicit permission. 

Example 12.1 

Simple truss with concentrated loads 

DATA: A = 25 cm2 
L I- 2 = L 2- 3 = 100 cm L2-4 = 60 cm 

E = 2 x 107 N/cm2 P = IOOOON DIX = DIY = D3X = 0 

4 4 

L-~e~ _____ 2~ ______ ~e~3 ~~ ______ ~ ______ ~O~3 

ANSYSmodel 

p 
Case - 1 

Case - 2 

The truss is assumed to be in X-V plane with X in the horizontal direction, Y in 
the vertical direction and origin at node 1. The truss is analysed for two steps 
(or load cases), with a concentrated load P acting along -Y direction at node 2 
(case-I) and same load acting at node 4 (case-2). In both the cases, node 1 is 
fixed in all DOF while node 3 is fixed in Y direction only (roller support). To 
explain different input commands, this problem is solved 2 times with one load 
acting at a time while problem 3 is solved in a single run with loads acting 
separately in 2 different load steps. 
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The method of solving as multiple load cases gives results for the these load 
cases separately, while saving computer time in the calculation of element 
stiffness matrices in element local coordinate system, transformation of these 
matrices to the common global coordinate system, assembling these element 
matrices, and applying boundary conditions on the assembled stiffness matrix. 

Input Data In ANSYS 

Preferences - Structural 

Preprocessor -

Element type - Add - Structural link - 2D spar 1 

Real constants - Add - Set No.1; Area 25 

Material props - Constant Isotropic - Material No I; EX 2e7 

Modeling create - Nodes - on Working plane-
(0,0),( 1 00,0),(200,0),( 100,60) 

Elements - Thm Nodes - (1,2 ),(2,3 ),( 1 ,4),(2,4),(3,4) 

Loads - Loads Apply - Structural Displacement - on Nodes - 1 FX, FY 

-3 FY 

** Case-l ** Structural Force/Moment - on Nodes - 2 
FY Constant value -10000 

** Case-2 ** Structural Force/Moment - on Nodes - 4 
FY Constant value -10000 

Solution - Analysis type - New Analysis - Static 

Solve current LS - Solution is done - Close 

General Postproc - Plot results - Deformed shape - Def + undeformed 

List results - Nodal solution - DOF solution - All DOFs 

Node 

1,2,3,4,5 

UX UY 

Element solution - Line Elem results - Structural ELEM 

EL MFORX SAXL 

1,2,3,4,5 

Reaction solution - All items 

Node 

1,3 

FX FY 
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Results Obtained: Consistent with units of input data, the displacements are 

read in 'cm' and the member forces/reactions are read in 'N'. 

Case 1 

<hy = -0.0083834 

84 = -0.0071834 

Rly = R3Y = 5000 

FI2 = F2-3 = 8333.3 

FI-4 = F3-4 = -9718.3 

F24 = 10000 

Case 2 

82y = -0.0083834 

84 = -0.0071834 

Rly = R3Y = 5000 

FI2 = F2-3 = 8333.3 

FI -4 = F3-4 = -9718.3 

F2-4 = 0 

Check of Results: Solving by the method of joints and applying the conditions 

L Fx = 0 and L Fy = 0 at each joint or node. 

At node 2 

At node 4 

At node 3 

At node 2 

At node 1 

Example 12.2 

Case 1 

F2--4 = 10000 N 

F 1--4 = F3-4 = F2--4 / 2 sin 8 

= 9718.25 N 

F2-3 = F3--4 cos 8 = 8333.3 N 

R3Y = F3--4 sin 8 

= 5000 N 

FI-2 = F2-3 = 8333.3 N 

Rly = FI--4 sin 8 = 5000 N 

Rlx = FI--4 cos 8 _ FI_2 

=ON 

Case 2 

F2--4 = 0 N 

FI--4 = F3-4 = P / sin 8 

= 9718.25 N 

F2-3 = F3--4 cos 8 = 8333.3 N 

R3Y = F3--4 sin e 
= 5000N 

FI-2 = F2- 3 = 8333.3 N 

Rly = FI--4 sin 8 = 5000 N 

Rlx = FI--4 cos 8 - FJ-2 

=ON 

Stepped shaft subjected to temperature change. 

DATA: Element 1 - A = 24 cm2 
; a = 20 x 10-6 / DC; E = 1 X 107 N/cm2 

Element 2 - A = 18 cm2 
• a = 12 x 100-6/ DC· E = 2 x 107 N/cm2 , , 

Element3- A=12cm2 ·a=12x 1O-6/ DC ·E=2x 107N/cm2 , , 
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~T=80°C fromAtoD 

A CD B CD C CD D 

IlOcm ~'m+40'm-> 
ANSYS Model 

Input Data In ANSYS 

Preferences - Structural 
Preprocessor -

R:!, M:! R" M2 

CD 3 CD 4 R - Real constant set 
x ---- x M _ Material properties set 

Element type - Add - Structural link - 20 spar 
Real constants - Add - Set No. I; Area 24 

Set No. 2; Area 18 
Set No.3; Area 12 

Material props - Constant Isotropic - Material No 1; EX I e7 ; ALPX 20e-6 

Material No 2 ; EX 2e7 ; ALPX 12e-6 
Modeling create - Nodes - on Working plane - (0,0),(80,0),(140,0),(180,0) 

Elements -Elem attributes - Real const. Set no. I , MatI No. I 
Thru Nodes - (1,2) 

Elem attributes - Real COlIst. Set no.2, MatI No.2 
Thru Nodes - (2,3) 

Elem attributes - Real const. Set no. 1 , Mati No.1 
Thru Nodes - (3,4) 

Loads - Loads Apply - Structural Displacement - on Nodes - 1,4 FX 
Structural Temperature - on Nodes - Pick ALL 

Temp Constant value 80 

Solution - Analysis type - New Analysis - Static 
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Solve current LS - Solution is done - Close 

General Postproc - Plot results - Defonned shape - Def + undefonned 

List results - Nodal solution - DOF solution - Translation UX 

Node UX 
1,2,3,4 

Element solution - Line Elem results - Structural ELEM 

EL MFORX SAXL 
1,2,3 

Reaction solution - Structural force FX 

Node FX 
1,4 

Results Obtained: OB = 0.016 Oc = 0.0176 

RA = - Ro = 336000 FI =F2=F3=-336000 

Example 12.3 

Beam With Concentrated & Distributed Loads 

DATA: A = 20 cm2 

1= 50 cm4 

LI-2 = L2-3 = 100 cm 

h = 5 cm 

P = 10000 N (Case-I) p = 60 N/cm (Case-2) 

p 

E=2 x 107N/cm2 

Oly = 03y = 0 

21 
t 

J~l-.L-l -=.....L..-
2 1 ---x-l ~1 ~ 3 

T Case- 2 i 
3 

i Case - 1 

Input Data In ANSYS 

Preferences - Structural 

Preprocessor -

Element type - Add - Structural Beam - 2D Elastic 3 

Real constants - Add - Set No.1; Area (A) 25 ; Moment ofInertia(IX) 50 
Height of section(h) 5 

Material props - Constant Isotropic - Material No 1; EX 2e7 

Modeling create - Nodes - on Working plane - (0,0), (100,0), (200,0) 

Elements - Thru Nodes - (1,2),(2,3) 

Loads - Loads Apply - Structural Displacement - on Nodes - 1,3 FY 
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Structural Force/Moment - on Nodes - 2 

FY Constant value - 10000 

Write LS file - LS file No. I 

Loads - Delete - Structural Force/Moment - on Nodes - 2 - All 

Apply - Pressure - on Beams - 1,2 - Face No. I - value = - 60 

Write LS file - LS file No.2 

Solution - Analysis type - New Analysis - Static 

Solve from LS files - Start file No I; End file No.2; Increment I 

General Postproc - Read First set -

Plot results - Deformed shape - Oef + undeformed 

List results - Nodal solution - OOF solution - All OOFs 

Node UX UY 

Element solution - Line Elem results - Structural ELEM 

EL MFORX SAXL 

Reaction solution - All items 

Node FX FY 

Plot Ctrls - Animate - Deformed shape - Def + undeformed - Play 

Read Next set -

Plot results - Deformed shape - Def + undeformed 

List results - Nodal solution - OOF solution - All DOFs 

Node· UX UY 

Element solution - Line Elem results - Structural ELEM 

EL MFORX SAXL 

Reaction solution - All items 

Node FX FY 

Plot Ctrls - Animate - Deformed shape - Def + undeformed - Play 
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Results Obtained: 

Case 1 

~>z = - 1.6667 

81 = - 83 = - 0.025 

R1y = R3Y = 5000 

Check of Results: 

PL3 

D =-
max 48 E I 

= 1.6667 cm 

PL2 

8 =--
max 16EI 

= 0.025 

P 
R1y =R3y =-=5000N 

2 

Case 2 

D2 = - 1.25 

8 1 =-83 =-0.02 

R1y = R3Y = 6000 

5 P L4 
D =--'-

max 384 E I 

= 1.25 cm 

pIJ 
8 =-

max 24 E I 
= 0.02 

pL 200 
R1y =R3y =-60x-=6000N 

2 2 

r~~~~~~ ~~~~<I 

D'fO~i~:~=:-:::::::::,,,--,.....,"'o:::::::\::::> --
as plotted True shape of 

deformed plot 

Note: Deformed plot of the beam in both the cases will show straight lines 
between nodes 1 & 2 as well as between nodes 2 & 3, eventhough a cubic 
displacement polynomial is used while calculating stiffness matrix of each 
beam element. This is not reflective of the formulation used but a limitation 
of tire post processor to represent displacement distribution between any 
two points. Mathematically, with the displacement data at two nodes, only a 
straight line can be fit: 

Example 12.4 

Natural frequencies and mode shapes of a cantilever 

DATA: A = 20 cm2 1= 50 cm4 h = 5 cm 

LI- 2 = ~-3 = L3-4 = L4- 5 = 25 cm 

E = 2 X 107 N/cm2 p = 8 x 10-3 kg/cm3 D1X = DIY = 8 = 0 

~;---------;---------!---------~ 
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Input Data In ANSYS 

Preferences - Structural 

Preprocessor -

Element type - Add - Structural Beam - 20 Elastic 3 

Real constants - Add - Set No. I; Area(A) 20 Moment ofInertia(Ix) 50 

Height of section(h) 5 

Material props - Constant Isotropic - Material No I; EX 2e7; Density Se-3 

Modeling create-Nodes-on Working plane-
(0,0),(25,0),(50,0),(75,0),( I 00,0) 

Elements - Thru Nodes - (1,2),(2,3),(3,4),(4,5) 

Loads - Loads Apply - Structural Displacement - on Nodes - I ALL 

Solution - Analysis type - New Analysis - Modal 

Analysis options - Subspace; No. of modes to extract - 4 ; 

No. of modes to expand - 4 

Expansion pass - on 

Solve current LS - Solution is done - Close 

General Postproc - Results summary- Freq I to 4 

Read First set - Plot Ctrls - Animate - Mode shape - Play! 

Repeat for all modes 

Read Next set - Plot Ctrls - Animate - Mode shape - Play! 

Results Obtained: Natural frequencies - 4.4215,27.645, 77.476, 125.S0 

Check of Results: In this problem, number of frequencies calculated and the 
accuracy of results depend on the number of elements used in the model. 

where 

Then, 

Least frequency, (01 = (211t) ~ 
() = max deflection of the cantilever 

L4 
= -p- and p = p A g is the distributed load 

SEI 

(01 = 3.557 rad/sec 
\ 

'Example 12.5 

1-0 heat conduction through a composite wall 

DATA: LI=30 cm L2=15 cm L3=15 cm 

KI = 20 W/m °c K2 = 30 W/m °c K3 = 50W/moC 

E = 2 X 107 N/cm2 h = 25 W/m2 °c T I = SOO °C ; T 5 = 20°C 
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ANSYS Model 

Fluid at Wall of 
r~ =ROO 0(' Material 1 

L - 10 em LI,MI 
2 

x x 

Convecllon r-element 

3 
x 

Wallot 
Matcnal2 

Ll ,M1 
4 
x 

Conductioll elemcnt~ 

Wallnt 
Matenal, 

1.3' M3 
5 

" 

---1 

T - 20 "c 

Real constants - Area of cross section, A = I cm2. for all the 4 elements 

M - Material properties set 

Input Data In ANSYS 

Preferences - Structural 

Preprocessor - Element type - Add - Thermal link - Convection; 

20 conduction 

Real constants - Add - Set No.1; Area 25 

Material props - Constant Isotropic - Material No I ; HF 25 

Material No 2; KX 20 

Material No 3; KX 30 

Material No 4; KX 50 

Modeling create - Nodes - on Working plane-

(0,0),(0.1,0),(0.4,0),(0.55,0),(0.7,0) 

Elements - Elem attributes - Elem type I ; Mati No. I 

Thru Nodes - (1,2) 

Elem attributes - Elem type 2 ; Mati No.2 

Thru Nodes - (2,3) 

Elem attributes - Elem type 2 ; Mati No.3 

Thru Nodes - (3,4) 

Elem attributes - Elem type 2 ; Mati No.4 

Thru Nodes - (4,5) 

Loads - Loads Apply - Temperature - on Nodes - I 800; 5 20 

Solution - Analysis type - New Analysis - Steady state 

Solve current LS - Solution is done - Close 
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General Postproc ~ Plot results - Nodal solution - OOF solution - Temperatures . 
List results - Nodal solution - OOF solution - Temperatures 

Node Temperature 

Element solution - Line Elem results - Heat flow 

EL Heat flow 

Reaction solution - All items 

Node Heat flow 

Other option 

Preprocessor - Element type - Add - Thermal link 

Convection - Option - K3 - SFE command - 20 conduction 

Loads - Loads Apply - Temperature - on Nodes - I 800; 5 20 

Convection - on elem - 1 - HF 25 ; TBulk 800 

Results Obtained: T2 = 304.76 °C ; T3 = 119.05 °C ; T4 = 57.14 °C 

Heat flow = 12380.95 W 

Check of Results 

Ovemll thennal resistance, U = [ I r 15.873 
1 L) L2 L3 -+--+--+-
h K) K2 K3 

Heat flow, Q = U (T) - Ts) = 15.873 (800 - 20) = 12380.95 

Q =h (T)- T2) 

=K) (T2 - T3 ) 

L) 

=K
2 

(T3 -T4 ) 

L2 

=K3 (T4 -TJ 
L3 

=> T3 = 119.05 °C 
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Results with scaling correction factors of the program 

T2 = 798.31 °C 

When SFE command option is used for the convection element, effective 
film coefficient, h/ff 

= T B hf (where, T B is the Bulk temperature value input in 
SFE command and hf is the film coefficient value input in SFE command) is 
used. This results in a higher temperature drop across wall thickness and 
consequently in higher thermal stresses. Design based on these temperatures 
will be conservative. 

Example 12.6 

Stress concentration factor in a plate with hole 

DATA: L = 160 cm H = 100 cm Plate thickness, t = 0.8 cm 

Hole dia = 20 cm E = 2 X 107 N/cm2 Poisson's ratio = 0.3 

P = 10240 N 

T 
H p+-__ ~ +p 

L ~I 
ANSYS Model: Since the geometry as well as loads are symmetric about the 

two major dimensions of the plate, a quarter plate can be modeled for analysis. 
To ensure uniform loading along the small side, the load P is applied as uniform 

P 
pressure. p = -

Ht 

I 
I 
I 
I 
I 
I 
I 
I 

~--------------------
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Note: In the case of continuum analysis, unlike in the case of discrete 
structures, accuracy of results obtained by Finite Element Method improves 
in general by the use of more number of elements as well as by the use of 
higher order elements such 8-noded quadrilateral or 6-noded triangle. Due to 
the limitations of number of DOF in the educational version of ANSYS, 
refinement of solution is not attempted here. 

Input Data In ANSYS 

Preferences - Structural 

Preprocessor -

Element type - Add - Structural solid - Quad 4 node 

- option - Plane stress wlthk 

Real constants - Add - Set No.1; Thickness 0.8 

Material props - Constant Isotropic - Material No 1; EX 2e7; NUXY 0.3 

Modeling create - Rectangle - By 2 corners - X,Y, L, H 0,0,80,50 

Circle - Solid circle - X,Y, Radius 0,0, 10 

Operate - Boolean subtract - Areas 

- Base area; Area to be subtracted 

Loads - Apply - Structural Displacement - Symmetry B.C. - on lines 

Pressure - on line - constant value; 80 

Meshing - Size cntrls - Global size - Element edge length 3 

Mesh - Areas Free 

Solution - Solve current LS - Solution is done - close 

General postproc - Plot results - Deformed shape - Def + Undeformed shape 
Plot results - Nodal solution - DOF solution - Translation UX 

Element solution - Stress - X-direction SX 

Sorted listing - Sort Nodes - Descending order - Stress X-direction 

List results - Element solution - Stress - X-direction SX 

Max value 238.63 N/cm2 

Sorted listing - Sort Nodes - Descending order - Stress Y -direction 

List results - Element solution - Stress - Y -direction SY 

Max value 29.147 N/cm2 
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Alternative method of creating model 

Preprocessor - Modeling create - Lines - Arcs - By Cent & Radius - (0,0), 
(10,0) 

Arc length in degrees 90 

Key points - On Working plane - (80,0), (80,50), (0,50) 

Lines - Straight line - By key points 

Area - Arbitrary - By lines 

Results Obtained: 

Normal stress along X-axis (SX) Max value = 238.63 N/CI112 

Max normal stress, in the absence of stress concentration 

P 

= (H -d)t 
10240 x 0.8 == 160 N/cm2 

(100-20) 

Stress concentration factor = 238.63 = 1.4914375 
160 

Check of Results: For D/H = 0.2, Stress Conc. factor for a rectangular plate 
with circular hole = 2.51 (from Mechanical design Handbooks). 

Example 12.7 

Centrifugal stresses in an axisymmetric solid 

Data: E = 2 x 107 N/cm2 Poisson's ratio = 0.3 Mass density = 8 gm/cm3 

Speed, N = 3000 rpm All dimensions are in mm 

ANSYS Model: Since the geometry and loads are axi-symmetric, anyone 
section in axis-radius plane can be modeled. Also, since the geometry as well as 
loads is symmetric about the mid plane along the axis, half the flywheel can be 
modeled for analysis with symmetry boundary conditions applied on the plane 
of symmetry. ANSYS program assumes X-axis to be along the radius while Y
axis represents the axis of symmetry. Also, the program requires that the 
model be input in the right handed coordinate system (151 quadrant of X-Y 
plane is more convenient). For this purpose, a quarter of the component on the 
bottom side of the right half is modeled as shown. This quarter section is rotated 
by 90° to represent this in the familiar way with horizontal x-axis and vertical y-

21tN 
axis. Angular velocity ro = --= 314 rad/sec is input about the axis of 

60 
revolution (Y-axis). 
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T 
300 100 

1 140 . f . ._._·_.·AxISO rotatIOn '-'-'-'-'-'-'-'-'-'-'-' 
I 

25 25 

Y:2 3 
t 

4 5 

; 1 --------------------------------------]'------..x 

Input Data In ANSYS 

Preferences - Structural 

Preprocessor - Element type - Add - Structural solid - Quad 4 node 

- option - Axisymmetric 

Material props - Constant Isotropic - Material No 1 

EX 2e5; NUXY 0.3; DENS 8e-3 

Modeling - create - Key points - On Working plane 

(20,0),( 150,0),( 150,25),(50,25),(50,50),(20,50) 

Lines - Straight line - By key points -

(1,2),(2,3),(3,4 ),(4,5),(5,6),(6,1) 

Area - Arbitrary - By lines - Pick lines 1,2,3,4,5,6 

Meshing - Size cntrl- Global size - Element edge length 5 

Mesh - Areas - Free - Pick area 1 

Loads - Apply - Structural Displacement - Symmetry B.C. - on lines - 1 

Others - Angular velocity - OMEGY about Y-axis 314 
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Solution - Solve current LS - Solution is done - close 

General postproc - Plot results - Deformed shape - Def + Undeformed shape 
Nodal solution - DOF solution - Translation UX 

Translation UY 

Element solution - Stress - X-direction SX 

V-direction SY 

Z-direction SZ 

Sorted listing - Sort Nodes - Descending order - Stress Xrdirection SX 

Y -direction SY 

Results Obtained: 

UX(mm) 

UY(mm) 

SX (N/mm2
) 

SY (N/mm2
) 

SZ (N/mm2
) 

OBJECTIVE QUESTIONS 

I. ANSYS uses 

(a) frontal solution 

(c) 'Cramer's rule 

Z-direction SZ 

Max Min 

7.767 1.477 

0 -5.054 

0.337e3 -0. 11ge2 

0.121e3 -O.145e3 

0.543e3 0.6005e2 

(b) banded matrix solution 

(d) Cholesky decomposition 

2. A single analysis with 3 similar load steps takes __ time compared to 
3 analyses with single load case in each 

(a) 3 times more 

(c) same 

(b) < 3 times less 

(d) not related 

3. An analysis with 1 load step takes __ time compared to analysis with 
3 similar load cases 

(a) 113 times less (b) > 1/3 times less 

(c) same (d) not related 

4. Consistent loads are based on 

(a) stress equilibrium (b) displacement continuity 

(c) energy equivalence (d) force balance 
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5. Within elastic limit, results due to a combination of loads is same as 
linear superposition of results by each of those loads 

(a) always true (b) always false 

(c) sometimes true (d) needs repeated analysis 

6. A truss element in ANSYS is identified as 

(a) line element 

(c) truss element 

(b) spar element 

(d) beam element 

7. A uniformly distributed load on a beam is indicated in ANSYS as 

(a) udl (b) uvl 

(c) pressure (d) equivalent nodal loads 

8. Uniform pressure along an edge of a plate element is specified 
ANSYS as 

(a) pressure on element (b) pressure along edge 

(c) pressure at each node (d) same pressure at all nodes 

In 

9. Deformed shape of a simply supported beam with concentrated load at 
the mid-point appears in ANSYS as 

(a) circular arc 

(b) triangle with max displacement at mid-point 

(c) parabolic arc 

(d) straight line 

10. Deformed shape in ANSYS is drawn with 

(a) actual nodal displacements 

(b) normalised nodal displacements 

(c) magnified nodal displacements 

(d) reduced nodal displacements 

11. Loads command in ANSYS includes 

(a) loads & displacements 

(c) loads only 

(b) loads & stresses 

(d) loads or displacements 

12. As a default option, mesh is refined in ANSYS using 

(a) g-method (b) h-method (c) p-method (d) r-method 
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13. Real constants in ANSYS indicate 

(a) material properties (b) section properties 

(c) thermal properties (d) nodal loads 

14. "Attributes" in ANSYS refer to 

(a) section & material properties (b) section properties 

(c) material properties (d) applied loads 

15. Basic shapes of area I volume in ANSYS modelling are called 

(a) Basics (b) Primitives 

( c) Primaries (d) Areas and volumes 

16. Most FEM software reduce computer memory requirement by storing 

(a) half of symmetric stiffness matrix 

(b) half of banded matrix 

(c) stiffness matrix as a column vector 

(d) complete stiffness matrix 

17. Most FEM software use 

(a) displacement method (b) force method 

(c) stress method (d) hybrid method 

18. Stresses in most FEM software are given in 

(a) N/mm2 (b) Pascal 

(c) units based on input data (d) user specified units 

19. Most FEM software analyse a structure using 

(a) displacement method (b) stress method 

(c) force method (d) mixed method 

20. Displacements in most FEM software are given in 

(a) mm (b) m 

(c) units based on input data (d) user specified units 

21. Distributed load along an edge of a plane stress element is usually 
specified as 

(a) pressure at nodes along the edge 

(b) pressure along the edge 

(c) equivalent nodal loads at the nodes on the edge 

(d) different values of pressure applied at all nodes ofthe element 
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22. A tensile distributed load along an edge of a plane stress element is 
represented by __ at the nodes 

23. 

24. 

(a) +ve pressure (b) 

(c) +ve nodal loads (d) 

Generalised load means 

(a) load (b) 

(c) load or displacement (d) 

Attributes in ANSYS refer to 

(a) material property set number 

(b) section property set number 

-ve pressure 

-ve nodal loads 

displacement 

temperature 

for the elements 

(c) material & section property set numbers 

(d) load set number 

25. ANSYS accepts section properties set based on_ 

(a) element type (b) element size 

(c) type of load (d) type of material 
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